使用BERT模型生成token级向量

拥有回忆 提交于 2020-08-11 00:58:36

 

 

本文默认读者有一定的Transformer基础,如果没有,请先稍作学习Transormer以及BERT。

相信网上有很多方法可以生成BERT向量,最有代表性的一个就是bert as service,用几行代码就可以生成向量,但是这样生成的是句向量,也就是说,正确的做法是输入一句句子:

我是一个中国人,我热爱着中国的每一个城市。

输出的是这句句子的向量,一个768维的向量(google预训练是这么做的),这个向量是具有上下文信息的,详细参考Transformer结构。但是网上有一些做法是用bert as service来生成词级向量,例如输入[‘我’,‘是’,‘一个’, ‘中国’, ‘人’],得到5个768维的向量,用来作为词向量,但这样做是错误的!具体原因参照我前面的描述,既然思想是错误的,也就不奇怪效果不好了,所以在这种情况下,请先别着急说BERT预训练模型不work。

BERT生成token级别的向量,这两篇文章理解的比较准确(我的代码有一部分参考第二篇博客):

https://blog.csdn.net/u012526436/article/details/87697242

https://blog.csdn.net/shine19930820/article/details/85730536

为什么说是token级别的向量呢?因为Transformer结构所决定其输入和输出的长度相等的,而且对于中文预训练模型,做法是将中文拆成一个个的字来做学习的,因此每一个token就是一个字。对于一句话,我们会在其头上加[cls]在尾部加[SEP],并且BERT是一个多任务的预训练过程,现在假设text_a是我们需要获取向量的句子,text_b为空,那么,输入:

我是一个中国人,我热爱着中国的每一个城市。

处理后:

[CLS]我是一个中国人,我热爱着中国的每一个城市。[SEP]

通常我们会用第一个字符[CLS]的输出向量(768维)作为整个句子的向量表示,用来接全连接、softmax层做分类,现在我打算获取这样一个句子中每一个字符的向量表示,并存储下来,以备下游任务,如果我只用[CLS]的向量来做分类,那么就只取第一个向量,如果用所有token的向量来做卷积,那么就舍弃一头一尾的向量,取中间的向量来做卷积,这样下游任务不用改太多代码,把这样的信息存储在文件里,下游任务用起来比较灵活。

 

存储ndarray

要能够把词向量存储下来供下次使用,就肯定要知道怎么存储ndarray,因为拿到的词向量是shape为(N, seq_len, 768)的ndarray,N代表有多少个句子,seq_len代表句子的长度(加上头尾),768即向量的维度。这里我使用h5py存储ndarray,当然也有一些别的方法。

import h5py
# shape a: (3, 4, 5)
a = np.array([[[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1]],
              [[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1]],
              [[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1]]])
print(a.shape)

save_file = h5py.File('../downstream/input_c_emb.h5', 'w')
save_file.create_dataset('train', data=a)
save_file.close()

open_file = h5py.File('../downstream/input_c_emb.h5', 'r')
data = open_file['train'][:]
open_file.close()
print(data)
print(type(data))
print(data.shape)

  

字符级Token

因为我希望对中文字符进行一个字符一个字符的提取,而不是会把非中文字符拼在一起(这是google的逻辑),比如说”我出生于1996年“这句话,我希望提取为‘我’,‘出’,‘生’,‘于’,‘1’,‘9’,‘9’,‘6’,‘年’,因此需要自己写一个token类,在bert项目中tokenization.py文件中。

class CharTokenizer(object):
  """Runs end-to-end tokenziation."""

  def __init__(self, vocab_file, do_lower_case=True):
    self.vocab = load_vocab(vocab_file)
    self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
    self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)

  def tokenize(self, text):
    split_tokens = []
    for token in self.basic_tokenizer.tokenize(text):
      for sub_token in token:
        # 有的字符在预训练词典里没有
        # 这部分字符替换成[UNK]符号
        if not sub_token in self.vocab:
          split_tokens.append('[UNK]')
        else:
          split_tokens.append(sub_token)
    return split_tokens

  def convert_tokens_to_ids(self, tokens):
    return convert_tokens_to_ids(self.vocab, tokens)

  

提取向量作为特征

这里对于输入输出稍作解释,我的输入有三个文件,train.txt,val.txt,test.txt,顾名思义了。每个文件中的一系列的句子,比如train.txt中有5000多行,代表5000多个句子,每一个句子是已经以空格分开的序列,比如”我 爱 中 国“。输出就是一个input_c_emb.h5,里面保存了所有的嵌入向量,以train,val,test标识为分隔。

代码注释还行,就不详细说了。

这段代码在项目中是token_features.py,项目地址后面会放。

# 获取token features,即每一个字符的向量,可以用cls作为句子向量,也可以用每一个字符的向量
import os
import sys
curPath = os.path.abspath(os.path.dirname(__file__))
rootPath = os.path.split(curPath)[0]
sys.path.append(rootPath)
print(sys.path)
import tensorflow as tf
import tokenization
import modeling
import numpy as np
import h5py



# 配置文件
# data_root是模型文件,可以用预训练的,也可以用在分类任务上微调过的模型
data_root = '../chinese_wwm_ext_L-12_H-768_A-12/'
bert_config_file = data_root + 'bert_config.json'
bert_config = modeling.BertConfig.from_json_file(bert_config_file)
init_checkpoint = data_root + 'bert_model.ckpt'
bert_vocab_file = data_root + 'vocab.txt'

# 经过处理的输入文件路径
file_input_x_c_train = '../data/legal_domain/train_x_c.txt'
file_input_x_c_val = '../data/legal_domain/val_x_c.txt'
file_input_x_c_test = '../data/legal_domain/test_x_c.txt'

# embedding存放路径
emb_file_dir = '../data/legal_domain/emb.h5'

# graph
input_ids = tf.placeholder(tf.int32, shape=[None, None], name='input_ids')
input_mask = tf.placeholder(tf.int32, shape=[None, None], name='input_masks')
segment_ids = tf.placeholder(tf.int32, shape=[None, None], name='segment_ids')

BATCH_SIZE = 16
SEQ_LEN = 510


def batch_iter(x, batch_size=64, shuffle=False):
    """生成批次数据,一个batch一个batch地产生句子向量"""
    data_len = len(x)
    num_batch = int((data_len - 1) / batch_size) + 1

    if shuffle:
        indices = np.random.permutation(np.arange(data_len))
        x_shuffle = np.array(x)[indices]
    else:
        x_shuffle = x[:]

    word_mask = [[1] * (SEQ_LEN + 2) for i in range(data_len)]
    word_segment_ids = [[0] * (SEQ_LEN + 2) for i in range(data_len)]

    for i in range(num_batch):
        start_id = i * batch_size
        end_id = min((i + 1) * batch_size, data_len)
        yield x_shuffle[start_id:end_id], word_mask[start_id:end_id], word_segment_ids[start_id:end_id]


def read_input(file_dir):
    # 从文件中读到所有需要转化的句子
    # 这里需要做统一长度为510
    # input_list = []
    with open(file_dir, 'r', encoding='utf-8') as f:
        input_list = f.readlines()

    # input_list是输入list,每一个元素是一个str,代表输入文本
    # 现在需要转化成id_list
    word_id_list = []
    for query in input_list:
        split_tokens = token.tokenize(query)
        if len(split_tokens) > SEQ_LEN:
            split_tokens = split_tokens[:SEQ_LEN]
        else:
            while len(split_tokens) < SEQ_LEN:
                split_tokens.append('[PAD]')
        # ****************************************************
        # 如果是需要用到句向量,需要用这个方法
        # 加个CLS头,加个SEP尾
        tokens = []
        tokens.append("[CLS]")
        for i_token in split_tokens:
            tokens.append(i_token)
        tokens.append("[SEP]")
        # ****************************************************
        word_ids = token.convert_tokens_to_ids(tokens)
        word_id_list.append(word_ids)
    return word_id_list


# 初始化BERT
model = modeling.BertModel(
    config=bert_config,
    is_training=False,
    input_ids=input_ids,
    input_mask=input_mask,
    token_type_ids=segment_ids,
    use_one_hot_embeddings=False
)

# 加载BERT模型
tvars = tf.trainable_variables()
(assignment, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment)
# 获取最后一层和倒数第二层
encoder_last_layer = model.get_sequence_output()
encoder_last2_layer = model.all_encoder_layers[-2]

# 读取数据
token = tokenization.CharTokenizer(vocab_file=bert_vocab_file)

input_train_data = read_input(file_dir='../data/legal_domain/train_x_c.txt')
input_val_data = read_input(file_dir='../data/legal_domain/val_x_c.txt')
input_test_data = read_input(file_dir='../data/legal_domain/test_x_c.txt')

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    save_file = h5py.File('../downstream/input_c_emb.h5', 'w')
    emb_train = []
    train_batches = batch_iter(input_train_data, batch_size=BATCH_SIZE, shuffle=False)
    for word_id, mask, segment in train_batches:
        feed_data = {input_ids: word_id, input_mask: mask, segment_ids: segment}
        last2 = sess.run(encoder_last2_layer, feed_dict=feed_data)
        # print(last2.shape)
        for sub_array in last2:
            emb_train.append(sub_array)
    # 可以保存了
    emb_train_array = np.asarray(emb_train)
    save_file.create_dataset('train', data=emb_train_array)

    # val
    emb_val = []
    val_batches = batch_iter(input_val_data, batch_size=BATCH_SIZE, shuffle=False)
    for word_id, mask, segment in val_batches:
        feed_data = {input_ids: word_id, input_mask: mask, segment_ids: segment}
        last2 = sess.run(encoder_last2_layer, feed_dict=feed_data)
        # print(last2.shape)
        for sub_array in last2:
            emb_val.append(sub_array)
    # 可以保存了
    emb_val_array = np.asarray(emb_val)
    save_file.create_dataset('val', data=emb_val_array)

    # test
    emb_test = []
    test_batches = batch_iter(input_test_data, batch_size=BATCH_SIZE, shuffle=False)
    for word_id, mask, segment in test_batches:
        feed_data = {input_ids: word_id, input_mask: mask, segment_ids: segment}
        last2 = sess.run(encoder_last2_layer, feed_dict=feed_data)
        # print(last2.shape)
        for sub_array in last2:
            emb_test.append(sub_array)
    # 可以保存了
    emb_test_array = np.asarray(emb_test)
    save_file.create_dataset('test', data=emb_test_array)

    save_file.close()

    print(emb_train_array.shape)
    print(emb_val_array.shape)
    print(emb_test_array.shape)

    # 这边目标是接下游CNN任务,因此先写入所有token的embedding,768维
    # 写入shape直接是(N, max_seq_len + 2, 768)
    # 下游需要选用的时候,如果卷积,则去掉头尾使用,如果全连接,则直接使用头部
    # 这里直接设定max_seq_len=510,加上[cls]和[sep],得到512
    # 写入(n, 512, 768) ndarray到文件,需要用的时候再读出来,就直接舍弃embedding层

  

项目地址

点击这里

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!