参考文章:使用springboot构建rest api远程提交spark任务
spark-submit动态提交的办法(SparkLauncher实战)
Spark-利用SparkLauncher 类以JAVA API 编程的方式提交spark job--impt
github代码链接:github地址
1. spark集群及版本信息
服务器版本:centos7
hadoop版本:2.8.3
spark版本:2.3.3
使用springboot构建rest api远程提交spark任务,将数据库中的表数据存储到hdfs上,任务单独起一个项目,解除与springboot项目的耦合
2. 构建springboot项目
1. pom配置
<properties>
<java.version>1.8</java.version>
<spark.version>2.3.3</spark.version>
<scala.version>2.11</scala.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.46</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-launcher_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.49</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<finalName>spark</finalName>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<mainClass>com.hrong.springbootspark.SpringbootSparkApplication</mainClass>
</configuration>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
2. 项目结构
3. 编写代码
1. 创建spark任务实体
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.springframework.beans.factory.annotation.Value;
import java.util.Map;
/**
* @Author hrong
**/
@Data
@NoArgsConstructor
@AllArgsConstructor
public class SparkApplicationParam {
/**
* 任务的主类
*/
private String mainClass;
/**
* jar包路径
*/
private String jarPath;
@Value("${spark.master:yarn}")
private String master;
@Value("${spark.deploy.mode:cluster}")
private String deployMode;
@Value("${spark.driver.memory:1g}")
private String driverMemory;
@Value("${spark.executor.memory:1g}")
private String executorMemory;
@Value("${spark.executor.cores:1}")
private String executorCores;
/**
* 其他配置:传递给spark job的参数
*/
private Map<String, String> otherConfParams;
/**
* 调用该方法可获取spark任务的设置参数
* @return SparkApplicationParam
*/
public SparkApplicationParam getSparkApplicationParam(){
return new SparkApplicationParam(mainClass, jarPath, master, deployMode, driverMemory, executorMemory, executorCores, otherConfParams);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
2. 任务参数对象
每个任务执行的时候都必须指定运行参数,所以要继承SparkApplicationParam对象
import com.hrong.springbootspark.entity.SparkApplicationParam;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
/**
* @Author hrong
**/
@Data
@NoArgsConstructor
@AllArgsConstructor
public class DataBaseExtractorVo extends SparkApplicationParam {
/**
* 数据库连接地址
*/
private String url;
/**
* 数据库连接账号
*/
private String userName;
/**
* 数据库密码
*/
private String password;
/**
* 指定的表名
*/
private String table;
/**
* 目标文件类型
*/
private String targetFileType;
/**
* 目标文件保存路径
*/
private String targetFilePath;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
3. 定义spark提交方法
1. 定义interface
每个spark任务运行时都需要指定运行参数,但是任务内部所需的参数不一样,所以第一个参数为通用的参数对象,第二个参数为可变参数,根据不同的任务来进行传值
import com.hrong.springbootspark.entity.SparkApplicationParam;
import java.io.IOException;
/**
* @Author hrong
* @description spark任务提交service
**/
public interface ISparkSubmitService {
/**
* 提交spark任务入口
* @param sparkAppParams spark任务运行所需参数
* @param otherParams 单独的job所需参数
* @return 结果
* @throws IOException io
* @throws InterruptedException 线程等待中断异常
*/
String submitApplication(SparkApplicationParam sparkAppParams, String... otherParams) throws IOException, InterruptedException;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2. 具体实现
import com.alibaba.fastjson.JSONObject;
import com.hrong.springbootspark.entity.SparkApplicationParam;
import com.hrong.springbootspark.service.ISparkSubmitService;
import com.hrong.springbootspark.util.HttpUtil;
import org.apache.spark.launcher.SparkAppHandle;
import org.apache.spark.launcher.SparkLauncher;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import java.io.IOException;
import java.util.Map;
import java.util.concurrent.CountDownLatch;
/**
* @Author hrong
**/
@Service
public class SparkSubmitServiceImpl implements ISparkSubmitService {
private static Logger log = LoggerFactory.getLogger(SparkSubmitServiceImpl.class);
@Value("${driver.name:n151}")
private String driverName;
@Override
public String submitApplication(SparkApplicationParam sparkAppParams, String... otherParams) throws IOException, InterruptedException {
log.info("spark任务传入参数:{}", sparkAppParams.toString());
CountDownLatch countDownLatch = new CountDownLatch(1);
Map<String, String> confParams = sparkAppParams.getOtherConfParams();
SparkLauncher launcher = new SparkLauncher()
.setAppResource(sparkAppParams.getJarPath())
.setMainClass(sparkAppParams.getMainClass())
.setMaster(sparkAppParams.getMaster())
.setDeployMode(sparkAppParams.getDeployMode())
.setConf("spark.driver.memory", sparkAppParams.getDriverMemory())
.setConf("spark.executor.memory", sparkAppParams.getExecutorMemory())
.setConf("spark.executor.cores", sparkAppParams.getExecutorCores());
if (confParams != null && confParams.size() != 0) {
log.info("开始设置spark job运行参数:{}", JSONObject.toJSONString(confParams));
for (Map.Entry<String, String> conf : confParams.entrySet()) {
log.info("{}:{}", conf.getKey(), conf.getValue());
launcher.setConf(conf.getKey(), conf.getValue());
}
}
if (otherParams.length != 0) {
log.info("开始设置spark job参数:{}", otherParams);
launcher.addAppArgs(otherParams);
}
log.info("参数设置完成,开始提交spark任务");
SparkAppHandle handle = launcher.setVerbose(true).startApplication(new SparkAppHandle.Listener() {
@Override
public void stateChanged(SparkAppHandle sparkAppHandle) {
if (sparkAppHandle.getState().isFinal()) {
countDownLatch.countDown();
}
log.info("stateChanged:{}", sparkAppHandle.getState().toString());
}
@Override
public void infoChanged(SparkAppHandle sparkAppHandle) {
log.info("infoChanged:{}", sparkAppHandle.getState().toString());
}
});
log.info("The task is executing, please wait ....");
//线程等待任务结束
countDownLatch.await();
log.info("The task is finished!");
//通过Spark原生的监测api获取执行结果信息,需要在spark-default.xml、spark-env.sh、yarn-site.xml进行相应的配置
String estUrl = "http://"+driverName+":18080/api/v1/applications/" + handle.getAppId();
return HttpUtil.httpGet(restUrl, null);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
4. Controller写法
controller主要的职责就是接受页面的参数,将参数传递到service层
import com.hrong.springbootspark.service.ISparkSubmitService;
import com.hrong.springbootspark.vo.DataBaseExtractorVo;
import com.hrong.springbootspark.vo.Result;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.ResponseBody;
import javax.annotation.Resource;
import java.io.IOException;
/**
* @Author hrong
**/
@Slf4j
@Controller
public class SparkController {
@Resource
private ISparkSubmitService iSparkSubmitService;
/**
* 调用service进行远程提交spark任务
* @param vo 页面参数
* @return 执行结果
*/
@ResponseBody
@PostMapping("/extract/database")
public Object dbExtractAndLoad2Hdfs(@RequestBody DataBaseExtractorVo vo){
try {
return iSparkSubmitService.submitApplication(vo.getSparkApplicationParam(),
vo.getUrl(),
vo.getTable(),
vo.getUserName(),
vo.getPassword(),
vo.getTargetFileType(),
vo.getTargetFilePath());
} catch (IOException | InterruptedException e) {
e.printStackTrace();
log.error("执行出错:{}", e.getMessage());
return Result.err(500, e.getMessage());
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
3. 构建Spark任务项目(Maven项目)
1. pom配置
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<java.version>1.8</java.version>
<hadoop.version>2.8.3</hadoop.version>
<spark.version>2.3.3</spark.version>
<scala.version>2.11</scala.version>
<scala-library.version>2.11.8</scala-library.version>
<mysql.version>5.1.46</mysql.version>
<oracle.version>11g</oracle.version>
<codehaus.version>3.0.10</codehaus.version>
</properties>
<dependencies>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>${mysql.version}</version>
</dependency>
<!-- 下载好了jar包install到本地的,无法使用maven下载 -->
<dependency>
<groupId>com.oracle.driver</groupId>
<artifactId>jdbc-driver</artifactId>
<version>${oracle.version}</version>
</dependency>
<!--spark相关开始-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.codehaus.janino</groupId>
<artifactId>commons-compiler</artifactId>
<version>${codehaus.version}</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala-library.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<finalName>spark-job</finalName>
<pluginManagement>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
</plugin>
</plugins>
</pluginManagement>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<executions>
<execution>
<id>scala-compile-first</id>
<phase>process-resources</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>scala-test-compile</id>
<phase>process-test-resources</phase>
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<executions>
<execution>
<phase>compile</phase>
<goals>
<goal>compile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
2. 项目结构
3. spark job代码
获取外部参数,连接数据库,并将指定表中的数据根据指定的格式、目录转存到hdfs上
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* @Author hrong
* @Description 将数据库中的表数据保存到hdfs上
**/
public class DbTableEtl {
private static Logger log = LoggerFactory.getLogger(DbTableEtl.class);
public static void main(String[] args) {
SparkSession spark = SparkSession.builder()
.appName(DbTableEtl.class.getSimpleName())
.getOrCreate();
String url = args[0];
String dbtable = args[1];
String user = args[2];
String password = args[3];
String targetFileType = args[4];
String targetFilePath = args[5];
Dataset<Row> dbData = spark.read()
.format("jdbc")
.option("url", url)
.option("dbtable", dbtable)
.option("user", user)
.option("password", password)
.load();
log.info("展示部分样例数据,即将开始导入到hdfs");
dbData.show(20, false);
dbData.write().mode("overwrite").format(targetFileType).save(targetFilePath);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
3. 项目打包
直接使用IDEA自带打包功能
1. springboot项目
2. Spark job项目
4. 上传至服务器
5. 将spark-job上传至hdfs
6. 启动springboot项目
7. 使用postman调用接口
指定jarPath、mainClass、deployMode以及任务所需参数
8. 调用结果
程序开始提交任务
程序执行结束
代码放在了github上面,链接:github地址
来源:oschina
链接:https://my.oschina.net/u/4344048/blog/4286786