问题
My question is about how to implement the classic ICloneable
interface in such a way that it won't lead to inadvertent object-slicing when a future programmer isn't paying close attention. Here's an example of the kind of programming error I'd like to detect (preferably at compile-time):
#include <stdio.h>
class ICloneable
{
public:
virtual ICloneable * clone() const = 0;
};
class A : public ICloneable
{
public:
A() {}
A(const A & rhs) {}
virtual ICloneable * clone() const {return new A(*this);}
};
class B : public A
{
public:
B() {}
B(const B & rhs) {}
// Problem, B's programmer forget to add a clone() method here!
};
int main(int, char**)
{
B b;
ICloneable * clone = b.clone(); // d'oh! (clone) points to an A, not a B!
return 0;
}
Is there any way in C++ to convince the compiler to emit an error if B
(or any further non-abstract subclasses of B
) doesn't define its own clone()
method? Short of that, is there any automatic way to detect this error at run-time?
回答1:
It's a while ago that I faced the very same issue in the very same situation without finding a satisfying solution.
Thinking about this again, I found something which might be a solution (at best):
#include <iostream>
#include <typeinfo>
#include <typeindex>
class Base { // abstract
protected:
Base() = default;
Base(const Base&) = default;
Base& operator=(const Base&) = default;
public:
virtual ~Base() = default;
Base* clone() const
{
Base *pClone = this->onClone();
const std::type_info &tiClone = typeid(*pClone);
const std::type_info &tiThis = typeid(*this);
#if 0 // in production
assert(std::type_index(tiClone) == type_index(tiThis),
"Missing overload of onClone()!");
#else // for demo
if (std::type_index(tiClone) != std::type_index(tiThis)) {
std::cout << "ERROR: Missing overload of onClone()!\n"
<< " in " << tiThis.name() << '\n';
}
#endif // 0
return pClone;
}
protected:
virtual Base* onClone() const = 0;
};
class Instanceable: public Base {
public:
Instanceable() = default;
Instanceable(const Instanceable&) = default;
Instanceable& operator=(const Instanceable&) = default;
virtual ~Instanceable() = default;
protected:
virtual Base* onClone() const { return new Instanceable(*this); }
};
class Derived: public Instanceable {
public:
Derived() = default;
Derived(const Derived&) = default;
Derived& operator=(const Derived&) = default;
virtual ~Derived() = default;
protected:
virtual Base* onClone() const override { return new Derived(*this); }
};
class WrongDerived: public Derived {
public:
WrongDerived() = default;
WrongDerived(const WrongDerived&) = default;
WrongDerived& operator=(const WrongDerived&) = default;
virtual ~WrongDerived() = default;
// override missing
};
class BadDerived: public Derived {
public:
BadDerived() = default;
BadDerived(const BadDerived&) = default;
BadDerived& operator=(const BadDerived&) = default;
virtual ~BadDerived() = default;
// copy/paste error
protected:
virtual Base* onClone() const override { return new Derived(*this); }
};
#define DEBUG(...) std::cout << #__VA_ARGS__ << ";\n"; __VA_ARGS__
int main()
{
DEBUG(Instanceable obj1);
DEBUG(Base *pObj1Clone = obj1.clone());
DEBUG(std::cout << "-> " << typeid(*pObj1Clone).name() << "\n\n");
DEBUG(Derived obj2);
DEBUG(Base *pObj2Clone = obj2.clone());
DEBUG(std::cout << "-> " << typeid(*pObj2Clone).name() << "\n\n");
DEBUG(WrongDerived obj3);
DEBUG(Base *pObj3Clone = obj3.clone());
DEBUG(std::cout << "-> " << typeid(*pObj3Clone).name() << "\n\n");
DEBUG(BadDerived obj4);
DEBUG(Base *pObj4Clone = obj4.clone());
DEBUG(std::cout << "-> " << typeid(*pObj4Clone).name() << "\n\n");
}
Output:
Instanceable obj1;
Base *pObj1Clone = obj1.clone();
std::cout << "-> " << typeid(*pObj1Clone).name() << '\n';
-> 12Instanceable
Derived obj2;
Base *pObj2Clone = obj2.clone();
std::cout << "-> " << typeid(*pObj2Clone).name() << '\n';
-> 7Derived
WrongDerived obj3;
Base *pObj3Clone = obj3.clone();
ERROR: Missing overload of onClone()!
in 12WrongDerived
std::cout << "-> " << typeid(*pObj3Clone).name() << '\n';
-> 7Derived
BadDerived obj4;
Base *pObj4Clone = obj4.clone();
ERROR: Missing overload of onClone()!
in 10BadDerived
std::cout << "-> " << typeid(*pObj4Clone).name() << '\n';
-> 7Derived
Live Demo on coliru
The trick is actually quite easy:
Instead of overriding clone()
itself, it is used as trampoline into a virtual onClone()
method. Hence, clone()
can check the result for correctness before returning it.
This is not a compile-time check but a run-time check (what I consider as second best option). Assuming that every class of a class library in development should hopefully be checked / debugged at least during development I find this quite reliable.
The accepted answer to SO: Reusable member function in C++ showed me a way to make this even more immune against copy/paste errors:
Instead of typing out the class name in every overridden clone()
, the class name is obtained via decltype()
:
class Instanceable: public Base {
public:
Instanceable() = default;
Instanceable(const Instanceable&) = default;
Instanceable& operator=(const Instanceable&) = default;
virtual ~Instanceable() = default;
protected:
virtual Base* onClone() const
{
return new std::remove_const_t<std::remove_pointer_t<decltype(this)>>(*this);
}
};
class Derived: public Instanceable {
public:
Derived() = default;
Derived(const Derived&) = default;
Derived& operator=(const Derived&) = default;
virtual ~Derived() = default;
protected:
virtual Base* onClone() const override
{
return new std::remove_const_t<std::remove_pointer_t<decltype(this)>>(*this);
}
};
Live Demo on coliru
回答2:
Don't make A and B inherit from IClonable. Use a wrapper (BluePrint) instead :
struct IClonable {
virtual ~IClonable() = default;
virtual IClonable * clone() const = 0;
};
template<typename T>
class BluePrint final : IClonable {
public:
explicit BluePrint(T * element) : element(element) {
}
IClonable * clone() const override {
T * copy = element->clone();
return new BluePrint(copy);
}
T * get() const {
return element;
}
private:
T * const element;
};
struct A {
A * clone() const;
};
struct B : A {
B * clone() const;
};
You will have to tinker on the code a bit though, since this returns a clone of the wrapper and not immediately a clone of the element to be cloned. Then again, I don't know how you are planning to use the IClonable interface, so I can't complete this example for you.
来源:https://stackoverflow.com/questions/57405375/how-to-implement-icloneable-without-inviting-future-object-slicing