行列式及其应用
行列式 注意 本文参照 M I T MIT M I T 公开课, 可以看成是笔记。 什么是行列式 一个矩阵通常包括很多信息, 比如是否可逆等等。而对于每一个方阵, 都有一个数能够表示关于矩阵的很多信息, 这个数就叫做行列式。(本文从性质入手讲, 推导并不严谨, 不过这些性质都是经过严格证明了的)行列式也可以看做是从矩阵到实数的一个映射。要注意的是只有方阵才有行列式!!! 行列式的表示法 若 A A A 为方阵, 则其行列式可表示为: d e t ( A ) 或 ∣ A ∣ det(A)或\\ \left| A \right| d e t ( A ) 或 ∣ A ∣ 行列式的基本性质 行列式的基本性质有3条, 并且从这三条基本性质能够推出其他性质以及行列式的表达式。下面给出三条基本性质。 ① 单 位 矩 阵 的 行 列 式 为 1 ①单位矩阵的行列式为1 ① 单 位 矩 阵 的 行 列 式 为 1 对于这条性质没有过多的解释, 有点类似于定义, 将单位矩阵映射成为实数中的1, 也符合简便性。 ② 交 换 矩 阵 中 的 任 意 两 行 , 所 得 的 矩 阵 的 行 列 式 符 号 变 号 ②交换矩阵中的任意两行, 所得的矩阵的行列式符号变号 ② 交 换 矩 阵 中 的 任 意 两 行 , 所 得 的 矩 阵 的 行 列 式 符 号 变 号