问题
I am starting with Tensorflow 2.0
and trying to implement Guided BackProp to display Saliency Map. I started by computing the loss between y_pred
and y_true
of an image, then find gradients of all layers due to this loss.
with tf.GradientTape() as tape:
logits = model(tf.cast(image_batch_val, dtype=tf.float32))
print('`logits` has type {0}'.format(type(logits)))
xentropy = tf.nn.softmax_cross_entropy_with_logits(labels=tf.cast(tf.one_hot(1-label_batch_val, depth=2), dtype=tf.int32), logits=logits)
reduced = tf.reduce_mean(xentropy)
grads = tape.gradient(reduced, model.trainable_variables)
However, I don't know what to do with gradients in order to obtain the Guided Propagation.
This is my model. I created it using Keras layers:
image_input = Input((input_size, input_size, 3))
conv_0 = Conv2D(32, (3, 3), padding='SAME')(image_input)
conv_0_bn = BatchNormalization()(conv_0)
conv_0_act = Activation('relu')(conv_0_bn)
conv_0_pool = MaxPool2D((2, 2))(conv_0_act)
conv_1 = Conv2D(64, (3, 3), padding='SAME')(conv_0_pool)
conv_1_bn = BatchNormalization()(conv_1)
conv_1_act = Activation('relu')(conv_1_bn)
conv_1_pool = MaxPool2D((2, 2))(conv_1_act)
conv_2 = Conv2D(64, (3, 3), padding='SAME')(conv_1_pool)
conv_2_bn = BatchNormalization()(conv_2)
conv_2_act = Activation('relu')(conv_2_bn)
conv_2_pool = MaxPool2D((2, 2))(conv_2_act)
conv_3 = Conv2D(128, (3, 3), padding='SAME')(conv_2_pool)
conv_3_bn = BatchNormalization()(conv_3)
conv_3_act = Activation('relu')(conv_3_bn)
conv_4 = Conv2D(128, (3, 3), padding='SAME')(conv_3_act)
conv_4_bn = BatchNormalization()(conv_4)
conv_4_act = Activation('relu')(conv_4_bn)
conv_4_pool = MaxPool2D((2, 2))(conv_4_act)
conv_5 = Conv2D(128, (3, 3), padding='SAME')(conv_4_pool)
conv_5_bn = BatchNormalization()(conv_5)
conv_5_act = Activation('relu')(conv_5_bn)
conv_6 = Conv2D(128, (3, 3), padding='SAME')(conv_5_act)
conv_6_bn = BatchNormalization()(conv_6)
conv_6_act = Activation('relu')(conv_6_bn)
flat = Flatten()(conv_6_act)
fc_0 = Dense(64, activation='relu')(flat)
fc_0_bn = BatchNormalization()(fc_0)
fc_1 = Dense(32, activation='relu')(fc_0_bn)
fc_1_drop = Dropout(0.5)(fc_1)
output = Dense(2, activation='softmax')(fc_1_drop)
model = models.Model(inputs=image_input, outputs=output)
I am glad to provide more code if needed.
回答1:
First of all, you have to change the computation of the gradient through a ReLU, i.e.
Here a graphic example from the paper.
This formula can be implemented with the following code:
@tf.RegisterGradient("GuidedRelu")
def _GuidedReluGrad(op, grad):
gate_f = tf.cast(op.outputs[0] > 0, "float32") #for f^l > 0
gate_R = tf.cast(grad > 0, "float32") #for R^l+1 > 0
return gate_f * gate_R * grad
Now you have to override the original TF implementation of ReLU with:
with tf.compat.v1.get_default_graph().gradient_override_map({'Relu': 'GuidedRelu'}):
#put here the code for computing the gradient
After computing the gradient, you can visualize the result. However, one last remark. You compute a visualization for a single class. This means, you take the activation of a choosen neuron and set all the activations of the other neurons to zero for the input of Guided BackProp.
回答2:
I tried @tf.RegisterGradient
and gradient_override_map
as @Simdi suggested but it was not effective with TF2
. I am not sure if I was wrong in any steps but it seems that Relu
has not been replaced by GuidedRelu
. I think it is because: "There is no built-in mechanism in TensorFlow 2.0 to override all gradients for a built-in operator within a scope." as answered by mrry
in this discussion: https://stackoverflow.com/a/55799378/11524628
I used @tf.custom_gradient
as mrry
said and it worked perfectly for me:
@tf.custom_gradient
def guidedRelu(x):
def grad(dy):
return tf.cast(dy>0,"float32") * tf.cast(x>0, "float32") * dy
return tf.nn.relu(x), grad
model = tf.keras.applications.resnet50.ResNet50(weights='imagenet', include_top=True)
gb_model = Model(
inputs = [model.inputs],
outputs = [model.get_layer("conv5_block3_out").output]
)
layer_dict = [layer for layer in gb_model.layers[1:] if hasattr(layer,'activation')]
for layer in layer_dict:
if layer.activation == tf.keras.activations.relu:
layer.activation = guidedRelu
with tf.GradientTape() as tape:
inputs = tf.cast(preprocessed_input, tf.float32)
tape.watch(inputs)
outputs = gb_model(inputs)
grads = tape.gradient(outputs,inputs)[0]
You can see the implementation with two methods above in this Google Colab Notebook: https://colab.research.google.com/drive/17tAC7xx2IJxjK700bdaLatTVeDA02GJn?usp=sharing
@tf.custom_gradient
worked@tf.RegisterGradient
didn't work asrelu
not overridden with the registeredGuidedRelu
.
来源:https://stackoverflow.com/questions/55924331/how-to-apply-guided-backprop-in-tensorflow-2-0