What is the problem name for Traveling salesman problem(TSP) without considering going back to starting point?

拜拜、爱过 提交于 2019-11-27 19:20:09

I've found the answer to my question in this book. It is the same with Computer wiring problem which occurs repeatedly in the design of computers and other digital systems. The purpose is to minimize the total wire length. So, it is indeed a minimum length Hamiltonian path.

What the book suggests is to create a dummy point whose distances to every other points is 0. Therefore, the problem becomes an (n+1)-city symmetric TSP. After solving, just delete dummy point and then the minimum length Hamiltonian path is solved and we can get the TSP path without returning back the start point.

If I understand correctly, you want to find the shortest path (that starts from some vertex s) and goes through all the nodes in the graph without visiting the same node twice. A simpler problem, is the hamiltonian path problem. It asks, like you said, weather there exists such a path or not. Since that problem is NP-hard, and it's easier than your problem, solving your problem is at least NP-Hard. Well, that isn't true because your problem is not a decision problem. But what it does say is that we can almost be sure that there is no polynomial algorithm for your problem.

You can resort to approximation. There is a pretty cool approximation for the metric TSP here: http://en.wikipedia.org/wiki/Travelling_salesman_problem#Metric_TSP.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!