问题
I have tokenized data in the form of a list of unequally shaped arrays:
array([array([1179, 6, 208, 2, 1625, 92, 9, 3870, 3, 2136, 435,
5, 2453, 2180, 44, 1, 226, 166, 3, 4409, 49, 6728,
...
10, 17, 1396, 106, 8002, 7968, 111, 33, 1130, 60, 181,
7988, 7974, 7970])], dtype=object)
With their respective targets:
Out[74]: array([0, 0, 0, ..., 0, 0, 1], dtype=object)
I'm trying to transform them into a padded tf.data.Dataset()
, but it won't let me convert unequal shapes to a tensor. I will get this error:
ValueError: Can't convert non-rectangular Python sequence to Tensor.
The full code is here. Assume that my starting point is after y = ...
:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np
(train_data, test_data) = tfds.load('imdb_reviews/subwords8k',
split=(tfds.Split.TRAIN, tfds.Split.TEST),
as_supervised=True)
x = np.array(list(train_data.as_numpy_iterator()))[:, 0]
y = np.array(list(train_data.as_numpy_iterator()))[:, 1]
train_tensor = tf.data.Dataset.from_tensor_slices((x.tolist(), y))\
.padded_batch(batch_size=8, padded_shapes=([None], ()))
What are my options to turn this into a padded batch tensor?
回答1:
If your data is stored in Numpy arrays or Python lists, then you can use tf.data.Dataset.from_generator method to create the dataset and then pad the batches:
train_batches = tf.data.Dataset.from_generator(
lambda: iter(zip(x, y)),
output_types=(tf.int64, tf.int64)
).padded_batch(
batch_size=32,
padded_shapes=([None], ())
)
However, if you are using tensorflow_datasets.load
function, then there is no need to use as_numpy_iterator
to separate the data and the labels, and then put them back together in a dataset! That's redundant and inefficient. The objects returned by tensorflow_datasets.load
are already an instance of tf.data.Dataset
. So, you just need to use padded_batch
on them:
train_batches = train_data.padded_batch(batch_size=32, padded_shapes=([None], []))
test_batches = test_data.padded_batch(batch_size=32, padded_shapes=([None], []))
Note that in TensorFlow 2.2 and above, you no longer need to provide the padded_shapes
argument if you just want all the axes to be padded to the longest of the batch (i.e. default behavior).
来源:https://stackoverflow.com/questions/61334069/converting-a-list-of-unequally-shaped-arrays-to-tensorflow-2-dataset-valueerror