how to read and write to the same file in spark using parquet?

天涯浪子 提交于 2020-07-06 14:58:14

问题


I am trying to read from a parquet file in spark, do a union with another rdd and then write the result into the same file I have read from (basically overwrite), this throws the following error:

 couldnt write parquet to file: An error occurred while calling o102.parquet.
: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: execute, tree:
TungstenExchange hashpartitioning(billID#42,200), None
+- Union
   :- Scan ParquetRelation[units#35,price#36,priceSold#37,orderingTime#38,itemID#39,storeID#40,customerID#41,billID#42,sourceRef#43] InputPaths: hdfs://master-wat:8020/user/root/dataFile/parquet/general/NPM61LKK1C/Billbody
   +- Project [units#22,price#23,priceSold#24,orderingTime#25,itemID#26,storeID#27,customerID#28,billID#29,2 AS sourceRef#30]
      +- Scan ExistingRDD[units#22,price#23,priceSold#24,orderingTime#25,itemID#26,storeID#27,customerID#28,billID#29] 

    at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:49)
    at org.apache.spark.sql.execution.Exchange.doExecute(Exchange.scala:247)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
    at org.apache.spark.sql.execution.Sort.doExecute(Sort.scala:64)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
    at org.apache.spark.sql.execution.Window.doExecute(Window.scala:245)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
    at org.apache.spark.sql.execution.Filter.doExecute(basicOperators.scala:70)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
    at org.apache.spark.sql.execution.Project.doExecute(basicOperators.scala:46)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
    at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
    at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:109)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108)
    at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)
    at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)
    at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
    at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
    at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
    at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:256)
    at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148)
    at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:139)
    at org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:334)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
    at py4j.Gateway.invoke(Gateway.java:259)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:209)
    at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.FileNotFoundException: File does not exist: /user/root/dataFile/parquet/general/NPM61LKK1C/Billbody/part-r-00000-c51e45d3-6824-4fc2-9510-802e5379a86f.gz.parquet
    at org.apache.hadoop.hdfs.server.namenode.INodeFile.valueOf(INodeFile.java:66)
    at org.apache.hadoop.hdfs.server.namenode.INodeFile.valueOf(INodeFile.java:56)
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocationsUpdateTimes(FSNamesystem.java:1934)
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocationsInt(FSNamesystem.java:1875)
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocations(FSNamesystem.java:1855)
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocations(FSNamesystem.java:1827)
    at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.getBlockLocations(NameNodeRpcServer.java:566)
    at org.apache.hadoop.hdfs.server.namenode.AuthorizationProviderProxyClientProtocol.getBlockLocations(AuthorizationProviderProxyClientProtocol.java:88)
    at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.getBlockLocations(ClientNamenodeProtocolServerSideTranslatorPB.java:361)
    at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
    at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:617)
    at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1073)
    at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2086)
    at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2082)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:415)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1693)
    at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2080)

    at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
    at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
    at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
    at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
    at org.apache.hadoop.ipc.RemoteException.instantiateException(RemoteException.java:106)
    at org.apache.hadoop.ipc.RemoteException.unwrapRemoteException(RemoteException.java:73)
    at org.apache.hadoop.hdfs.DFSClient.callGetBlockLocations(DFSClient.java:1222)
    at org.apache.hadoop.hdfs.DFSClient.getLocatedBlocks(DFSClient.java:1210)
    at org.apache.hadoop.hdfs.DFSClient.getBlockLocations(DFSClient.java:1260)
    at org.apache.hadoop.hdfs.DistributedFileSystem$1.doCall(DistributedFileSystem.java:220)
    at org.apache.hadoop.hdfs.DistributedFileSystem$1.doCall(DistributedFileSystem.java:216)
    at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
    at org.apache.hadoop.hdfs.DistributedFileSystem.getFileBlockLocations(DistributedFileSystem.java:216)
    at org.apache.hadoop.hdfs.DistributedFileSystem.getFileBlockLocations(DistributedFileSystem.java:208)
    at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.getSplits(FileInputFormat.java:395)
    at org.apache.parquet.hadoop.ParquetInputFormat.getSplits(ParquetInputFormat.java:294)
    at org.apache.spark.sql.execution.datasources.parquet.ParquetRelation$$anonfun$buildInternalScan$1$$anon$1.getPartitions(ParquetRelation.scala:363)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.immutable.List.foreach(List.scala:318)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
    at scala.collection.AbstractTraversable.map(Traversable.scala:105)
    at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.ShuffleDependency.<init>(Dependency.scala:91)
    at org.apache.spark.sql.execution.Exchange.prepareShuffleDependency(Exchange.scala:220)
    at org.apache.spark.sql.execution.Exchange$$anonfun$doExecute$1.apply(Exchange.scala:254)
    at org.apache.spark.sql.execution.Exchange$$anonfun$doExecute$1.apply(Exchange.scala:248)
    at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:48)
    ... 56 more
Caused by: org.apache.hadoop.ipc.RemoteException(java.io.FileNotFoundException): File does not exist: /user/root/dataFile/parquet/general/NPM61LKK1C/Billbody/part-r-00000-c51e45d3-6824-4fc2-9510-802e5379a86f.gz.parquet
    at org.apache.hadoop.hdfs.server.namenode.INodeFile.valueOf(INodeFile.java:66)
    at org.apache.hadoop.hdfs.server.namenode.INodeFile.valueOf(INodeFile.java:56)
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocationsUpdateTimes(FSNamesystem.java:1934)
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocationsInt(FSNamesystem.java:1875)
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocations(FSNamesystem.java:1855)
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocations(FSNamesystem.java:1827)
    at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.getBlockLocations(NameNodeRpcServer.java:566)
    at org.apache.hadoop.hdfs.server.namenode.AuthorizationProviderProxyClientProtocol.getBlockLocations(AuthorizationProviderProxyClientProtocol.java:88)
    at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.getBlockLocations(ClientNamenodeProtocolServerSideTranslatorPB.java:361)
    at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
    at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:617)
    at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1073)
    at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2086)
    at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2082)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:415)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1693)
    at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2080)

    at org.apache.hadoop.ipc.Client.call(Client.java:1468)
    at org.apache.hadoop.ipc.Client.call(Client.java:1399)
    at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:232)
    at com.sun.proxy.$Proxy20.getBlockLocations(Unknown Source)
    at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getBlockLocations(ClientNamenodeProtocolTranslatorPB.java:254)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187)
    at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
    at com.sun.proxy.$Proxy21.getBlockLocations(Unknown Source)
    at org.apache.hadoop.hdfs.DFSClient.callGetBlockLocations(DFSClient.java:1220)
    ... 92 more

which I am assuming means that when writing to the file, the original file is needed for the union and spark can't find the file any more. I have tried caching what I have read from the parquet to avoid spark needing the file but that didn't work either. Any help on Hadoop's best practice for doing this is greatly appreciated.


回答1:


As spark does lazy transformation, it basically first wiped your destination directory and then goes and tries to read from source location. Hence you are getting this error.

One possible way is to overcome this is to use collect on your data frame . To avoid getting OOM exception filter data and use collect()[1] . This will force DAG to first read data and specify output to driver. And hence your data will be read before it’s overwritten.




回答2:


You must be using overwrite option in mode, please try to use append instead

df.repartition(200).write.mode("append").parquet("path/parquet_name")



回答3:


Just ran into the same issue...

you need to cache the first rdd before union. This would ensure it was read from disk into memory before you write to it.

val cached = first.cache()
cached.union(second).write.mode("overwrite").parquet("...")


来源:https://stackoverflow.com/questions/37057804/how-to-read-and-write-to-the-same-file-in-spark-using-parquet

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!