问题
I am cleaning a column in my data frame
, Sumcription, and am trying to do 3 things:
- Tokenize
- Lemmantize
Remove stop words
import spacy nlp = spacy.load('en_core_web_sm', parser=False, entity=False) df['Tokens'] = df.Sumcription.apply(lambda x: nlp(x)) spacy_stopwords = spacy.lang.en.stop_words.STOP_WORDS spacy_stopwords.add('attach') df['Lema_Token'] = df.Tokens.apply(lambda x: " ".join([token.lemma_ for token in x if token not in spacy_stopwords]))
However, when I print for example:
df.Lema_Token.iloc[8]
The output still has the word attach in it:
attach poster on the wall because it is cool
Why does it not remove the stop word?
I also tried this:
df['Lema_Token_Test'] = df.Tokens.apply(lambda x: [token.lemma_ for token in x if token not in spacy_stopwords])
But the str attach
still appears.
回答1:
import spacy
import pandas as pd
# Load spacy model
nlp = spacy.load('en', parser=False, entity=False)
# New stop words list
customize_stop_words = [
'attach'
]
# Mark them as stop words
for w in customize_stop_words:
nlp.vocab[w].is_stop = True
# Test data
df = pd.DataFrame( {'Sumcription': ["attach poster on the wall because it is cool",
"eating and sleeping"]})
# Convert each row into spacy document and return the lemma of the tokens in
# the document if it is not a sotp word. Finally join the lemmas into as a string
df['Sumcription_lema'] = df.Sumcription.apply(lambda text:
" ".join(token.lemma_ for token in nlp(text)
if not token.is_stop))
print (df)
Output:
Sumcription Sumcription_lema
0 attach poster on the wall because it is cool poster wall cool
1 eating and sleeping eat sleep
来源:https://stackoverflow.com/questions/55817040/removing-stop-words-using-spacy