问题
In PySpark it you can define a schema and read data sources with this pre-defined schema, e. g.:
Schema = StructType([ StructField("temperature", DoubleType(), True),
StructField("temperature_unit", StringType(), True),
StructField("humidity", DoubleType(), True),
StructField("humidity_unit", StringType(), True),
StructField("pressure", DoubleType(), True),
StructField("pressure_unit", StringType(), True)
])
For some datasources it is possible to infer the schema from the data-source and get a dataframe with this schema definition.
Is it possible to get the schema definition (in the form described above) from a dataframe, where the data has been inferred before?
df.printSchema()
prints the schema as a tree, but I need to reuse the schema, having it defined as above,so I can read a data-source with this schema that has been inferred before from another data-source.
回答1:
Yes it is possible. Use DataFrame.schema property
schema
Returns the schema of this DataFrame as a pyspark.sql.types.StructType.
>>> df.schema StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true)))
New in version 1.3.
Schema can be also exported to JSON and imported back if needed.
回答2:
You could re-use schema for existing Dataframe
l = [('Ankita',25,'F'),('Jalfaizy',22,'M'),('saurabh',20,'M'),('Bala',26,None)]
people_rdd=spark.sparkContext.parallelize(l)
schemaPeople = people_rdd.toDF(['name','age','gender'])
schemaPeople.show()
+--------+---+------+
| name|age|gender|
+--------+---+------+
| Ankita| 25| F|
|Jalfaizy| 22| M|
| saurabh| 20| M|
| Bala| 26| null|
+--------+---+------+
spark.createDataFrame(people_rdd,schemaPeople.schema).show()
+--------+---+------+
| name|age|gender|
+--------+---+------+
| Ankita| 25| F|
|Jalfaizy| 22| M|
| saurabh| 20| M|
| Bala| 26| null|
+--------+---+------+
Just use df.schema to get the underlying schema of dataframe
schemaPeople.schema
StructType(List(StructField(name,StringType,true),StructField(age,LongType,true),StructField(gender,StringType,true)))
回答3:
The code below will give you a well formatted tabular schema definition of the known dataframe. Quite useful when you have very huge number of columns & where editing is cumbersome. You can then now apply it to your new dataframe & hand-edit any columns you may want to accordingly.
from pyspark.sql.types import StructType
schema = [i for i in df.schema]
And then from here, you have your new schema:
NewSchema = StructType(schema)
来源:https://stackoverflow.com/questions/54503014/how-to-get-the-schema-definition-from-a-dataframe-in-pyspark