问题
I need to check the value of the least significant bit (LSB) and most significant bit (MSB) of an integer in C/C++. How would I do this?
回答1:
//int value;
int LSB = value & 1;
Alternatively (which is not theoretically portable, but practically it is - see Steve's comment)
//int value;
int LSB = value % 2;
Details: The second formula is simpler. The % operator is the remainder operator. A number's LSB is 1 iff it is an odd number and 0 otherwise. So we check the remainder of dividing with 2. The logic of the first formula is this: number 1 in binary is this:
0000...0001
If you binary-AND this with an arbitrary number, all the bits of the result will be 0 except the last one because 0 AND anything else is 0. The last bit of the result will be 1 iff the last bit of your number was 1 because 1 & 1 == 1
and 1 & 0 == 0
This is a good tutorial for bitwise operations.
HTH.
回答2:
You can do something like this:
#include <iostream>
int main(int argc, char **argv)
{
int a = 3;
std::cout << (a & 1) << std::endl;
return 0;
}
This way you AND
your variable with the LSB, because
3: 011
1: 001
in 3-bit representation. So being AND
:
AND
-----
0 0 | 0
0 1 | 0
1 0 | 0
1 1 | 1
You will be able to know if LSB is 1 or not.
edit: find MSB.
First of all read Endianess article to agree on what MSB
means. In the following lines we suppose to handle with big-endian notation.
To find the MSB
, in the following snippet we will focus applying a right shift until the MSB
will be AND
ed with 1
.
Consider the following code:
#include <iostream>
#include <limits.h>
int main(int argc, char **argv)
{
unsigned int a = 128; // we want to find MSB of this 32-bit unsigned int
int MSB = 0; // this variable will represent the MSB we're looking for
// sizeof(unsigned int) = 4 (in Bytes)
// 1 Byte = 8 bits
// So 4 Bytes are 4 * 8 = 32 bits
// We have to perform a right shift 32 times to have the
// MSB in the LSB position.
for (int i = sizeof(unsigned int) * 8; i > 0; i--) {
MSB = (a & 1); // in the last iteration this contains the MSB value
a >>= 1; // perform the 1-bit right shift
}
// this prints out '0', because the 32-bit representation of
// unsigned int 128 is:
// 00000000000000000000000010000000
std::cout << "MSB: " << MSB << std::endl;
return 0;
}
If you print MSB
outside of the cycle you will get 0
.
If you change the value of a
:
unsigned int a = UINT_MAX; // found in <limits.h>
MSB
will be 1
, because its 32-bit representation is:
UINT_MAX: 11111111111111111111111111111111
However, if you do the same thing with a signed integer things will be different.
#include <iostream>
#include <limits.h>
int main(int argc, char **argv)
{
int a = -128; // we want to find MSB of this 32-bit unsigned int
int MSB = 0; // this variable will represent the MSB we're looking for
// sizeof(int) = 4 (in Bytes)
// 1 Byte = 8 bits
// So 4 Bytes are 4 * 8 = 32 bits
// We have to perform a right shift 32 times to have the
// MSB in the LSB position.
for (int i = sizeof(int) * 8; i > 0; i--) {
MSB = (a & 1); // in the last iteration this contains the MSB value
a >>= 1; // perform the 1-bit right shift
}
// this prints out '1', because the 32-bit representation of
// int -128 is:
// 10000000000000000000000010000000
std::cout << "MSB: " << MSB << std::endl;
return 0;
}
As I said in the comment below, the MSB
of a positive integer is always 0
, while the MSB
of a negative integer is always 1
.
You can check INT_MAX 32-bit representation:
INT_MAX: 01111111111111111111111111111111
Now. Why the cycle uses sizeof()
?
If you simply do the cycle as I wrote in the comment: (sorry for the =
missing in comment)
for (; a != 0; a >>= 1)
MSB = a & 1;
you will get 1
always, because C++ won't consider the 'zero-pad bits' (because you specified a != 0
as exit statement) higher than the highest 1
. For example for 32-bit integers we have:
int 7 : 00000000000000000000000000000111
^ this will be your fake MSB
without considering the full size
of the variable.
int 16: 00000000000000000000000000010000
^ fake MSB
回答3:
int LSB = value & 1;
int MSB = value >> (sizeof(value)*8 - 1) & 1;
回答4:
Others have already mentioned:
int LSB = value & 1;
for getting the least significant bit. But there is a cheatier way to get the MSB than has been mentioned. If the value is a signed type already, just do:
int MSB = value < 0;
If it's an unsigned quantity, cast it to the signed type of the same size, e.g. if value
was declared as unsigned
, do:
int MSB = (int)value < 0;
Yes, officially, not portable, undefined behavior, whatever. But on every two's complement system and every compiler for them that I'm aware of, it happens to work; after all, the high bit is the sign bit, so if the signed form is negative, then the MSB is 1, if it's non-negative, the MSB is 0. So conveniently, a signed test for negative numbers is equivalent to retrieving the MSB.
回答5:
LSB is easy. Just x & 1.
MSSB is a bit trickier, as bytes may not be 8 bits and sizeof(int) may not be 4, and there might be padding bits to the right.
Also, with a signed integer, do you mean the sign bit of the MS value bit.
If you mean the sign bit, life is easy. It's just x < 0
If you mean the most significant value bit, to be completely portable.
int answer = 0;
int rack = 1;
int mask = 1;
while(rack < INT_MAX)
{
rack << = 1;
mask << = 1;
rack |= 1;
}
return x & mask;
That's a long-winded way of doing it. In reality
x & (1 << (sizeof(int) * CHAR_BIT) - 2); will be quite portable enough and your ints won't have padding bits.
来源:https://stackoverflow.com/questions/6647783/check-value-of-least-significant-bit-lsb-and-most-significant-bit-msb-in-c-c