问题
Let me explain my set up. I am using TensorFlow 2.1, the Keras version shipped with TF, and TensorFlow Probability 0.9.
I have a function get_model
that creates (with the functional API) and returns a model using Keras and custom layers. In the __init__
method of these custom layers A
, I call a method A.m
, which executes the statement print(tf.executing_eagerly())
, but it returns False
. Why?
To be more precise, this is roughly my setup
def get_model():
inp = Input(...)
x = A(...)(inp)
x = A(...)(x)
...
model = Model(inp, out)
model.compile(...)
return model
class A(tfp.layers.DenseFlipout): # TensorFlow Probability
def __init__(...):
self.m()
def m(self):
print(tf.executing_eagerly()) # Prints False
The documentation of tf.executing_eagerly says
Eager execution is enabled by default and this API returns True in most of cases. However, this API might return False in the following use cases.
- Executing inside
tf.function
, unless undertf.init_scope
ortf.config.experimental_run_functions_eagerly(True)
is previously called.- Executing inside a transformation function for
tf.dataset
.tf.compat.v1.disable_eager_execution()
is called.
But these cases are not my case, so tf.executing_eagerly()
should return True
in my case, but no. Why?
Here's a simple complete example (in TF 2.1) that illustrates the problem.
import tensorflow as tf
class MyLayer(tf.keras.layers.Layer):
def call(self, inputs):
tf.print("tf.executing_eagerly() =", tf.executing_eagerly())
return inputs
def get_model():
inp = tf.keras.layers.Input(shape=(1,))
out = MyLayer(8)(inp)
model = tf.keras.Model(inputs=inp, outputs=out)
model.summary()
return model
def train():
model = get_model()
model.compile(optimizer="adam", loss="mae")
x_train = [2, 3, 4, 1, 2, 6]
y_train = [1, 0, 1, 0, 1, 1]
model.fit(x_train, y_train)
if __name__ == '__main__':
train()
This example prints tf.executing_eagerly() = False
.
See the related Github issue.
回答1:
As far as I know, when an input to a custom layer is symbolic input, then the layer is executed in graph (non-eager) mode. However, if your input to the custom layer is an eager tensor (as in the following example #1, then the custom layer is executed in the eager mode. So your model's output tf.executing_eagerly() = False
is expected.
Example #1
from tensorflow.keras import layers
class Linear(layers.Layer):
def __init__(self, units=32, input_dim=32):
super(Linear, self).__init__()
w_init = tf.random_normal_initializer()
self.w = tf.Variable(initial_value=w_init(shape=(input_dim, units),
dtype='float32'),
trainable=True)
b_init = tf.zeros_initializer()
self.b = tf.Variable(initial_value=b_init(shape=(units,),
dtype='float32'),
trainable=True)
def call(self, inputs):
print("tf.executing_eagerly() =", tf.executing_eagerly())
return tf.matmul(inputs, self.w) + self.b
x = tf.ones((1, 2)) # returns tf.executing_eagerly() = True
#x = tf.keras.layers.Input(shape=(2,)) #tf.executing_eagerly() = False
linear_layer = Linear(4, 2)
y = linear_layer(x)
print(y)
#output in graph mode: Tensor("linear_9/Identity:0", shape=(None, 4), dtype=float32)
#output in Eager mode: tf.Tensor([[-0.03011466 0.02563028 0.01234017 0.02272708]], shape=(1, 4), dtype=float32)
Here is another example with Keras functional API where custom layer was used (similar to you). This model is executed in graph mode and prints tf.executing_eagerly() = False
as in your case.
from tensorflow import keras
from tensorflow.keras import layers
class CustomDense(layers.Layer):
def __init__(self, units=32):
super(CustomDense, self).__init__()
self.units = units
def build(self, input_shape):
self.w = self.add_weight(shape=(input_shape[-1], self.units),
initializer='random_normal',
trainable=True)
self.b = self.add_weight(shape=(self.units,),
initializer='random_normal',
trainable=True)
def call(self, inputs):
print("tf.executing_eagerly() =", tf.executing_eagerly())
return tf.matmul(inputs, self.w) + self.b
inputs = keras.Input((4,))
outputs = CustomDense(10)(inputs)
model = keras.Model(inputs, outputs)
来源:https://stackoverflow.com/questions/61355474/why-does-tf-executing-eagerly-return-false-in-tensorflow-2