相对于标准Java IO中通过File来指向文件和目录,Java NIO中提供了更丰富的类来支持对文件和目录的操作,不仅仅支持更多操作,还支持诸如异步读写等特性,本文我们就来学习一些Java NIO提供的和文件相关的类:
Java NIO AsynchronousFileChannel
1. Java NIO Path
Java Path是一个接口,位于java.nio.file包中,Java 7中引入到Java NIO中。
一个Java Path实现的实例对象代表文件系统中的一个路径,指向文件和目录,(标准Java IO中是通过File来指向文件和路径的),以绝对路径或者相对路径的方式。
java.nio.file.Path接口很多方面类似于java.io.File类,但是两者之间也是有细微的差别的。在大多数场景下是可以用Path来代替File的。
1.1 创建Path实例对象
可以通过Paths类的静态工厂方法get()来创建一个Path实例对象:
import java.nio.file.Path;
import java.nio.file.Paths;
public class PathExample {
public static void main(String[] args) {
Path path = Paths.get("c:\\data\\myfile.txt");
}
}
1.2 Creating an Absolute Path
通过直接指定绝对路径可以创建使用绝对路径方式指向文件的Path:
// windows系统
Path path = Paths.get("c:\\data\\myfile.txt");
// linux系统
Path path = Paths.get("/home/jakobjenkov/myfile.txt");
1.3 Creating a Relative Path
通过如下方式可以创建使用相对路径方式指向文件的Path:
Path projects = Paths.get("d:\\data", "projects");
Path file = Paths.get("d:\\data", "projects\\a-project\\myfile.txt");
采用相对路径的方式时,有两个符号可以用来表示路径:
- .
- ..
“.”可以表示当前目录,如下例子是打印当前目录(即应用程序的根目录):
Path currentDir = Paths.get(".");
System.out.println(currentDir.toAbsolutePath());
".."表示父文件夹。
当路径中包含如上两种符号时,可以通过调用normalize()方法来将路径规范化:
String originalPath = "d:\\data\\projects\\a-project\\..\\another-project";
Path path1 = Paths.get(originalPath);
System.out.println("path1 = " + path1);
Path path2 = path1.normalize();
System.out.println("path2 = " + path2);
输出结果如下:
path1 = d:\data\projects\a-project\..\another-project
path2 = d:\data\projects\another-project
2. Java NIO Files
Java NIO Files类(java.nio.file.Files)提供了一些方法用来操作文件,其是和上面提到的Path一起配合使用的。
2.1 Files.exists()
该方法可以用来检查Path指向的文件是否真实存在,直接看例子:
Path path = Paths.get("data/logging.properties");
boolean pathExists = Files.exists(path, new LinkOption[]{ LinkOption.NOFOLLOW_LINKS});
2.2 Files.createDirectory()
该方法会在硬盘上创建一个新的目录(即文件夹):
Path path = Paths.get("data/subdir");
try {
Path newDir = Files.createDirectory(path);
} catch(FileAlreadyExistsException e){
// the directory already exists.
} catch (IOException e) {
//something else went wrong
e.printStackTrace();
}
2.3 Files.copy()
该方法会将文件从一个地方复制到另一个地方:
Path sourcePath = Paths.get("data/logging.properties");
Path destinationPath = Paths.get("data/logging-copy.properties");
try {
Files.copy(sourcePath, destinationPath);
} catch(FileAlreadyExistsException e) {
//destination file already exists
} catch (IOException e) {
//something else went wrong
e.printStackTrace();
}
如果目标文件已存在,这里会抛出java.nio.file.FileAlreadyExistsException异常,想要强制覆盖文件也是可以的:
Path sourcePath = Paths.get("data/logging.properties");
Path destinationPath = Paths.get("data/logging-copy.properties");
try {
Files.copy(sourcePath, destinationPath,
StandardCopyOption.REPLACE_EXISTING);
} catch(FileAlreadyExistsException e) {
//destination file already exists
} catch (IOException e) {
//something else went wrong
e.printStackTrace();
}
2.4 Files.move()
该方法能够移动文件,也可以实现重命名的效果:
Path sourcePath = Paths.get("data/logging-copy.properties");
Path destinationPath = Paths.get("data/subdir/logging-moved.properties");
try {
Files.move(sourcePath, destinationPath,
StandardCopyOption.REPLACE_EXISTING);
} catch (IOException e) {
//moving file failed.
e.printStackTrace();
}
2.5 Files.delete()
该方法能够删除Path实例指向的文件或目录:
Path path = Paths.get("data/subdir/logging-moved.properties");
try {
Files.delete(path);
} catch (IOException e) {
//deleting file failed
e.printStackTrace();
}
Path path = Paths.get("data/subdir/logging-moved.properties");
try {
Files.delete(path);
} catch (IOException e) {
//deleting file failed
e.printStackTrace();
}
该方法删除目录时只能删除空目录,如果想删除下面有文件的目录则需要进行递归删除,后面会介绍。
2.6 Files.walkFileTree()
该方法能够递归地获取目录树,该方法接收两个参数,一个是指向目标目录,另一个是一个FileVisitor类型对象:
Files.walkFileTree(path, new FileVisitor<Path>() {
@Override
public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) throws IOException {
System.out.println("pre visit dir:" + dir);
return FileVisitResult.CONTINUE;
}
@Override
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {
System.out.println("visit file: " + file);
return FileVisitResult.CONTINUE;
}
@Override
public FileVisitResult visitFileFailed(Path file, IOException exc) throws IOException {
System.out.println("visit file failed: " + file);
return FileVisitResult.CONTINUE;
}
@Override
public FileVisitResult postVisitDirectory(Path dir, IOException exc) throws IOException {
System.out.println("post visit directory: " + dir);
return FileVisitResult.CONTINUE;
}
});
FileVisitor是一个接口,你需要实现它,接口的定义如下:
public interface FileVisitor {
public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) throws IOException;
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException;
public FileVisitResult visitFileFailed(Path file, IOException exc) throws IOException;
public FileVisitResult postVisitDirectory(Path dir, IOException exc) throws IOException {
}
该接口中包含4个方法,分别在目录转换的四个不同阶段调用:
- preVisitDirectory()方法在访问目录之前调用,而postVisitorDirectory()方法是在访问目录之后调用;
- visitFile()方法会在访问每个文件(访问目录是不会调用的)时调用一次,而visitorFileFailed()会在访问文件失败时被调用,比如没有访问权限或者别的问题。
这四个方法都会返回一个FileVisitResult枚举对象,包含如下成员:
- CONTINUE
- TERMINATE
- SKIP_SIBLINGS
- SKIP_SUBTREE
被调用的如上四个方法通过这些返回值来判断是否要继续遍历目录。
- CONTINUE,意味着继续;
- TERMINATE,意味着终止;
- SKIP_SIBLINGS,意味着继续,但是不再访问该文件或目录的兄弟;
- SKIP_SUBTREE,意味着继续,但是不再访问该目录下的条目。只有preVisitDirectory()返回该值才有意义,其余三个方法返回则会当做CONTINUE处理;
如果不想自己实现该接口,也可以使用SimpleFileVisitor,这是一个默认实现,如下是一个利用SimpleFileVisitor来实现文件查找、删除的例子:
递归查找文件
Path rootPath = Paths.get("data");
String fileToFind = File.separator + "README.txt";
try {
Files.walkFileTree(rootPath, new SimpleFileVisitor<Path>() {
@Override
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {
String fileString = file.toAbsolutePath().toString();
if(fileString.endsWith(fileToFind)){
System.out.println("file found at path: " + file.toAbsolutePath());
return FileVisitResult.TERMINATE;
}
return FileVisitResult.CONTINUE;
}
});
} catch(IOException e){
e.printStackTrace();
}
递归删除目录
因为delete()方法只能删除空目录,对于非空目录则需要将其进行遍历以逐个删除其子目录或文件,可以通过walkFileTree()来实现,在visitFile()方法中删除子目录,而在postVisitDirectory()方法中删除该目录本身:
Path rootPath = Paths.get("data/to-delete");
try {
Files.walkFileTree(rootPath, new SimpleFileVisitor<Path>() {
@Override
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {
System.out.println("delete file: " + file.toString());
Files.delete(file);
return FileVisitResult.CONTINUE;
}
@Override
public FileVisitResult postVisitDirectory(Path dir, IOException exc) throws IOException {
Files.delete(dir);
System.out.println("delete dir: " + dir.toString());
return FileVisitResult.CONTINUE;
}
});
} catch(IOException e){
e.printStackTrace();
}
其实利用walkFileTree()方法,我们可以很轻松地指定自己的逻辑,而无需考虑是如何遍历的,如果要用标准Java IO提供的File来实现类似功能我们还需要自己处理整个遍历的过程。
2.7 其它有用方法
java.nio.file.Files类还包含了很多别的有用方法,比如创建符号链接、文件大小、设置文件权限,这里就不一一介绍了,有兴趣的可以参考Java官方文档。
3. Java NIO AsynchronousFileChannel
Java 7中引入了AsynchronousFileChannel,使得可以异步地读写数据到文件。
3.1 Creating an AsynchronousFileChannel
通过其静态方法可以创建一个AsynchronousFileChannel。
Path path = Paths.get("data/test.xml");
AsynchronousFileChannel fileChannel = AsynchronousFileChannel.open(path, StandardOpenOption.READ);
第一个参数是一个指向要和AsynchronousFileChannel关联的文件的Path实例。第二个参数代表要对文件指向的操作,这里我们指定StandardOpenOption.READ,意思是执行读操作。
3.2 Reading Data
从AsynchronousFileChannel读数据有两种方式:
通过Future读数据
第一种方式是调用一个返回Future的read()方法:
Future<Integer> operation = fileChannel.read(buffer, 0);
这个版本的read()方法,其第一个参数是一个ByteBuffer,数据从channel中读到buffer中;第二个参数是要从文件中开始读取的字节位置。
该方法会马上返回,即使读操作实际上还没有完成。通过调用Future的isDone()方法可以知道读操作是否完成了。
如下是一个更详细的例子:
AsynchronousFileChannel fileChannel = AsynchronousFileChannel.open(path, StandardOpenOption.READ);
ByteBuffer buffer = ByteBuffer.allocate(1024);
long position = 0;
Future<Integer> operation = fileChannel.read(buffer, position);
while(!operation.isDone());
buffer.flip();
byte[] data = new byte[buffer.limit()];
buffer.get(data);
System.out.println(new String(data));
buffer.clear();
在这个例子中,当调用了AsynchronousFileChannel的read()方法之后,进入循环直到Future对象的isDone()返回true。当然这种方式并没有有效利用CPU,只是因为本例中需要等到读操作完成,其实这个等待过程我们可以让线程做别的事情。
通过CompletionHandler读数据
第二种读数据的方式是调用其包含CompletionHandler参数的read()方法:
fileChannel.read(buffer, position, buffer, new CompletionHandler<Integer, ByteBuffer>() {
@Override
public void completed(Integer result, ByteBuffer attachment) {
System.out.println("result = " + result);
attachment.flip();
byte[] data = new byte[attachment.limit()];
attachment.get(data);
System.out.println(new String(data));
attachment.clear();
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
}
});
当读操作完成之后会调用ComplementHandler的completed()方法,该方法的第一个入参是一个整型变量,代表读了多少字节数据,第二个入参是一个ByteBuffer,保存着已经读取的数据。
如果读失败了,则会调用ComplementHandler的fail()方法。
3.3 Writing Data
与读类似,写数据也支持两种方式。
通过Future写
如下是一个写数据的完整例子:
Path path = Paths.get("data/test-write.txt");
AsynchronousFileChannel fileChannel = AsynchronousFileChannel.open(path, StandardOpenOption.WRITE);
ByteBuffer buffer = ByteBuffer.allocate(1024);
long position = 0;
buffer.put("test data".getBytes());
buffer.flip();
Future<Integer> operation = fileChannel.write(buffer, position);
buffer.clear();
while(!operation.isDone());
System.out.println("Write done");
过程比较简单,就不讲一遍了。这个例子中有一个问题需要注意,文件必须事先准备好,如果不存在文件则会抛出java.nio.file.NoSuchFileException异常。
可以通过如下方式判断文件是否存在:
if(!Files.exists(path)){
Files.createFile(path);
}
通过CompletionHandler写数据
可以借助CompletionHandler来通知写操作已经完成,示例如下:
Path path = Paths.get("data/test-write.txt");
if(!Files.exists(path)){
Files.createFile(path);
}
AsynchronousFileChannel fileChannel =
AsynchronousFileChannel.open(path, StandardOpenOption.WRITE);
ByteBuffer buffer = ByteBuffer.allocate(1024);
long position = 0;
buffer.put("test data".getBytes());
buffer.flip();
fileChannel.write(buffer, position, buffer, new CompletionHandler<Integer, ByteBuffer>() {
@Override
public void completed(Integer result, ByteBuffer attachment) {
System.out.println("bytes written: " + result);
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
System.out.println("Write failed");
exc.printStackTrace();
}
});
System.out.println(“异步执行哦”);
如上是一个异步写入数据的例子,为了演示效果,我特意在 调用write方法之后打印了一行日志,运行结果如下:
异步执行哦
bytes written: 9
说明调用write方法并没有阻塞,而是继续往下执行,所以先打印日志,然后数据写好之后回调completed()方法。
4. 总结
本文总结了Java NIO中提供的对文件操作的相关类:Path、Files、AsynchronousFileChannel。
Path是一个接口,其实现实例可以指代一个文件或目录,作用与Java IO中的File类似。Path接口很多方面类似于java.io.File类,但是两者之间也是有细微的差别的,不过在大多数场景下是可以用Path来代替File的。
Files是一个类,提供了很多方法用来操作文件,是和上面提到的Path一起配合使用的,Files提供的对文件的操作功能要多于File。
AsynchronousFileChannel是Channel的子类,提供了异步读取文件的能力。
原文出处:https://www.cnblogs.com/volcano-liu/p/11220397.html
来源:oschina
链接:https://my.oschina.net/u/4277109/blog/3257347