统计学习方法 | 第3章 k邻近法

独自空忆成欢 提交于 2020-04-28 01:21:33

第3章 k近邻法

 

1.$k$近邻法是基本且简单的分类与回归方法。$k$近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的$k$个最近邻训练实例点,然后利用这$k$个训练实例点的类的多数来预测输入实例点的类。

2.$k$近邻模型对应于基于训练数据集对特征空间的一个划分。$k$近邻法中,当训练集、距离度量、$k$值及分类决策规则确定后,其结果唯一确定。

3.$k$近邻法三要素:距离度量、$k$值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。$k$值小时,$k$近邻模型更复杂;$k$值大时,$k$近邻模型更简单。$k$值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的$k$

常用的分类决策规则是多数表决,对应于经验风险最小化。

4.$k$近邻法的实现需要考虑如何快速搜索k个最近邻点。kd树是一种便于对k维空间中的数据进行快速检索的数据结构。kd树是二叉树,表示对$k$维空间的一个划分,其每个结点对应于$k$维空间划分中的一个超矩形区域。利用kd树可以省去对大部分数据点的搜索, 从而减少搜索的计算量。

 

距离度量

 

设特征空间$x$$n$维实数向量空间 ,$x_{i}, x_{j} \in \mathcal{X}$,$x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \cdots, x_{i}^{(n)}\right)^{\mathrm{T}}$,$x_{j}=\left(x_{j}^{(1)}, x_{j}^{(2)}, \cdots, x_{j}^{(n)}\right)^{\mathrm{T}}$ ,则:$x_i$,$x_j$$L_p$距离定义为:

$L_{p}\left(x_{i}, x_{j}\right)=\left(\sum_{i=1}^{n}\left|x_{i}^{(i)}-x_{j}^{(l)}\right|^{p}\right)^{\frac{1}{p}}$

  • $p= 1$ 曼哈顿距离
  • $p= 2$ 欧氏距离
  • $p= inf$ 闵式距离minkowski_distance
In [1]:
import math
from itertools import combinations 
In [2]:
def L(x, y, p=2): # x1 = [1, 1], x2 = [5,1] if len(x) == len(y) and len(x) > 1: sum = 0 for i in range(len(x)): sum += math.pow(abs(x[i] - y[i]), p) return math.pow(sum, 1 / p) else: return 0 
 

课本例3.1

In [3]:
x1 = [1, 1] x2 = [5, 1] x3 = [4, 4] 
In [4]:
# x1, x2
for i in range(1, 5): r = {'1-{}'.format(c): L(x1, c, p=i) for c in [x2, x3]} print(min(zip(r.values(), r.keys()))) 
 
(4.0, '1-[5, 1]')
(4.0, '1-[5, 1]')
(3.7797631496846193, '1-[4, 4]')
(3.5676213450081633, '1-[4, 4]')
 

python实现,遍历所有数据点,找出$n$个距离最近的点的分类情况,少数服从多数

In [5]:
import numpy as np
import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter 
In [6]:
# data
iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] # data = np.array(df.iloc[:100, [0, 1, -1]]) 
In [7]:
df
Out[7]:
  sepal length sepal width petal length petal width label
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
5 5.4 3.9 1.7 0.4 0
6 4.6 3.4 1.4 0.3 0
7 5.0 3.4 1.5 0.2 0
8 4.4 2.9 1.4 0.2 0
9 4.9 3.1 1.5 0.1 0
10 5.4 3.7 1.5 0.2 0
11 4.8 3.4 1.6 0.2 0
12 4.8 3.0 1.4 0.1 0
13 4.3 3.0 1.1 0.1 0
14 5.8 4.0 1.2 0.2 0
15 5.7 4.4 1.5 0.4 0
16 5.4 3.9 1.3 0.4 0
17 5.1 3.5 1.4 0.3 0
18 5.7 3.8 1.7 0.3 0
19 5.1 3.8 1.5 0.3 0
20 5.4 3.4 1.7 0.2 0
21 5.1 3.7 1.5 0.4 0
22 4.6 3.6 1.0 0.2 0
23 5.1 3.3 1.7 0.5 0
24 4.8 3.4 1.9 0.2 0
25 5.0 3.0 1.6 0.2 0
26 5.0 3.4 1.6 0.4 0
27 5.2 3.5 1.5 0.2 0
28 5.2 3.4 1.4 0.2 0
29 4.7 3.2 1.6 0.2 0
... ... ... ... ... ...
120 6.9 3.2 5.7 2.3 2
121 5.6 2.8 4.9 2.0 2
122 7.7 2.8 6.7 2.0 2
123 6.3 2.7 4.9 1.8 2
124 6.7 3.3 5.7 2.1 2
125 7.2 3.2 6.0 1.8 2
126 6.2 2.8 4.8 1.8 2
127 6.1 3.0 4.9 1.8 2
128 6.4 2.8 5.6 2.1 2
129 7.2 3.0 5.8 1.6 2
130 7.4 2.8 6.1 1.9 2
131 7.9 3.8 6.4 2.0 2
132 6.4 2.8 5.6 2.2 2
133 6.3 2.8 5.1 1.5 2
134 6.1 2.6 5.6 1.4 2
135 7.7 3.0 6.1 2.3 2
136 6.3 3.4 5.6 2.4 2
137 6.4 3.1 5.5 1.8 2
138 6.0 3.0 4.8 1.8 2
139 6.9 3.1 5.4 2.1 2
140 6.7 3.1 5.6 2.4 2
141 6.9 3.1 5.1 2.3 2
142 5.8 2.7 5.1 1.9 2
143 6.8 3.2 5.9 2.3 2
144 6.7 3.3 5.7 2.5 2
145 6.7 3.0 5.2 2.3 2
146 6.3 2.5 5.0 1.9 2
147 6.5 3.0 5.2 2.0 2
148 6.2 3.4 5.4 2.3 2
149 5.9 3.0 5.1 1.8 2

150 rows × 5 columns

In [8]:
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0') plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend() 
Out[8]:
<matplotlib.legend.Legend at 0x2c56f7f64e0>
 
In [9]:
data = np.array(df.iloc[:100, [0, 1, -1]]) X, y = data[:,:-1], data[:,-1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 
In [10]:
class KNN:
    def __init__(self, X_train, y_train, n_neighbors=3, p=2): """  parameter: n_neighbors 临近点个数  parameter: p 距离度量  """ self.n = n_neighbors self.p = p self.X_train = X_train self.y_train = y_train def predict(self, X): # 取出n个点 knn_list = [] for i in range(self.n): dist = np.linalg.norm(X - self.X_train[i], ord=self.p) knn_list.append((dist, self.y_train[i])) for i in range(self.n, len(self.X_train)): max_index = knn_list.index(max(knn_list, key=lambda x: x[0])) dist = np.linalg.norm(X - self.X_train[i], ord=self.p) if knn_list[max_index][0] > dist: knn_list[max_index] = (dist, self.y_train[i]) # 统计 knn = [k[-1] for k in knn_list] count_pairs = Counter(knn) # max_count = sorted(count_pairs, key=lambda x: x)[-1] max_count = sorted(count_pairs.items(), key=lambda x: x[1])[-1][0] return max_count def score(self, X_test, y_test): right_count = 0 n = 10 for X, y in zip(X_test, y_test
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!