用pycharm跑的没有出现动态线条的话:
1、点击setting,输入关键字Scien...
搜索出Python Scientific
, 在右侧去掉对勾(默认是勾选的),然后右下角Apply--OK
,即可完美解决。
2、这是在网上找的代码(原来是有问题的,我稍微修改了下,可以直接运行):
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_funiction=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_funiction is None:
outputs = Wx_plus_b
else:
outputs = activation_funiction(Wx_plus_b)
return outputs
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer
l1 = add_layer(xs, 1, 10, activation_funiction=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_funiction=None)
# the error between prediction and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x_data, y_data)
plt.ion() # 将画图模式改为交互模式
plt.show()
for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
plt.pause(0.1)
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
# print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
plt.ioff()
plt.show()
参考:https://www.jianshu.com/p/f659c421a5ac
来源:oschina
链接:https://my.oschina.net/u/4324321/blog/3621448