如何利用scrapy新建爬虫项目

两盒软妹~` 提交于 2020-04-24 18:44:11

抓取豆瓣top250电影数据,并将数据保存为csv、json和存储到monogo数据库中,目标站点:https://movie.douban.com/top250

一、新建项目

       打开cmd命令窗口,输入:scrapy startproject douban【新建一个爬虫项目】

       在命令行输入:cd douban/spiders【进入spiders目录】

       在命令行输入:scrapy genspider douban_spider movie.douban.com【douban_spider为爬虫文件,编写xpath和正则表达式的地方,movie.douban.com为允许的域名】

       在pycharm打开创建的douban项目,目录结构如下:

二、明确目标

       分析网站,确定要抓取的内容,编写items文件;

import scrapy

class DoubanItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    #序号
    serial_number = scrapy.Field()
    #电影名称
    movie_name = scrapy.Field()
    #电影简介
    introduce = scrapy.Field()
    #星级
    star = scrapy.Field()
    #评价数
    evaluate = scrapy.Field()
    #描述
    describe = scrapy.Field()

三、制作爬虫

        编写douban_spider爬虫文件

# -*- coding: utf-8 -*-
import scrapy
from douban.items import DoubanItem

class DoubanSpiderSpider(scrapy.Spider):
    #爬虫名,不能跟项目名称重复
    name = 'douban_spider'
    #允许的域名,域名之内的网址才会访问
    allowed_domains = ['movie.douban.com']
    #入口url,扔到调度器里边
    start_urls = ['https://movie.douban.com/top250']
#默认解析方法
    def parse(self, response):
        #循环电影的条目
        movie_list = response.xpath("//div[@class='article']//ol[@class='grid_view']//li")
        for i_item in movie_list:
            #item文件导进来
            douban_item = DoubanItem()
            #写详细的xpath,进行数据的解析
            douban_item['serial_number'] = i_item.xpath(".//div[@class='item']//em/text()").extract_first()
            douban_item['movie_name'] = i_item.xpath(".//div[@class='info']//div[@class='hd']//a//span[1]/text()").extract_first()
            content= i_item.xpath(".//div[@class='info']//div[@class='bd']//p[1]/text()").extract()
            #多行结果需要进行数据的处理
            #douban_item['introduce'] = ''.join(data.strip() for data in content)
            for i_content in content:
                content_s = "".join(i_content.split())
                douban_item['introduce'] = content_s
            douban_item['star'] = i_item.xpath(".//div[@class='star']//span[@class='rating_num']/text()").extract_first()
            douban_item['evaluate'] = i_item.xpath(".//div[@class='star']//span[4]/text()").extract_first()
            douban_item['describe'] = i_item.xpath(".//p[@class='quote']//span/text()").extract_first()
            #将数据yield到piplines中
            yield douban_item
        #解析下一页规则,取的后一页的xpath
        next_link = response.xpath("//span[@class='next']//a//@href").extract()
        if next_link:
            next_link=next_link[0]
            #yield url到piplines中,回调函数callback
            yield scrapy.Request("https://movie.douban.com/top250"+next_link,callback=self.parse)

      

四、存储内容

将数据存储为JSON格式:scrapy crawl douban_spider -o test.json

将数据存储为CSV格式:scrapy crawl douban_spider -o test.csv【生成的CSV文件直接打开会是乱码,先利用Notepad++工具打开,编码格式改为utf-8保存再重新打开即可】

将数据保存到monogo数据库中:

 

# -*- coding: utf-8 -*-
import pymongo
mongo_db_collection
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html


class DoubanPipeline(object):
#创建数据库连接 def __init__(self): host = '127.0.0.1' port = 27017 dbname = 'douban' sheetname = 'douban_movie' client = pymongo.MongoClient(host=host, port=port) mydb = client[dbname] self.post = mydb[sheetname]
#插入数据 def process_item(self, item, spider): data = dict(item) self.post.insert(data) return item

       打开settings文件的USER_AGENT选项,删除里边内容,到网站找一个正确的USER_AGENT粘贴进来。【方法:打开豆瓣top50网站,按F12开发者选项,选择Network-All,刷新页面,选择top250,右侧Headers最下边即为USER_AGENT,如下图所示】

       打开settings文件的ITEM_PIPELINES 

USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36
ITEM_PIPELINES = {
   'douban.pipelines.DoubanPipeline': 300,
}

       设置启动文件

       在douban文件下新建一个main.py文件,作为爬虫的启动文件,避免到命令窗口启动爬虫项目。

main文件内容如下:

from scrapy import cmdline
cmdline.execute('scrapy crawl douban_spider'.split())
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!