废话不说,上代码
retina face,
import os
import time
from math import ceil
import onnxruntime
import numpy as np
import cv2
import argparse
import argparse
import numpy as np
from data import cfg_mnet, cfg_peleenet
from utils.nms.py_cpu_nms import py_cpu_nms
from math import ceil
from itertools import product as product
#sigmoid函数
def sigmoid(x):
s = 1 / (1 + np.exp(-1*x))
return s
def softmax(x, axis=1):
# 计算每行的最大值
row_max = x.max(axis=axis)
# 每行元素都需要减去对应的最大值,否则求exp(x)会溢出,导致inf情况
row_max = row_max.reshape(-1, 1)
x = x - row_max
x_exp = np.exp(x)
x_sum = np.sum(x_exp, axis=axis, keepdims=True)
s = x_exp / x_sum
return s
def decode_landm(pre, priors, variances):
"""Decode landm from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
pre (tensor): landm predictions for loc layers,
Shape: [num_priors,10]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded landm predictions
"""
landms = np.concatenate((priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
), 1)
return landms
def decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = np.concatenate((
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * np.exp(loc[:, 2:] * variances[1])), 1)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
return boxes
class PriorBox(object):
def __init__(self, cfg, image_size=None, phase='train'):
super(PriorBox, self).__init__()
self.min_sizes = cfg['min_sizes']
self.steps = cfg['steps']
self.image_size = image_size
self.feature_maps = [[ceil(self.image_size[0]/step), ceil(self.image_size[1]/step)] for step in self.steps]
def forward(self):
anchors = []
for k, f in enumerate(self.feature_maps):
min_sizes = self.min_sizes[k]
for i, j in product(range(f[0]), range(f[1])):
for min_size in min_sizes:
s_kx = min_size / self.image_size[1]
s_ky = min_size / self.image_size[0]
dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
for cy, cx in product(dense_cy, dense_cx):
anchors += [cx, cy, s_kx, s_ky]
# back to torch land
output = np.array(anchors)
output = output.reshape(-1, 4)
return output
def sigmoid(x):
# TODO: Implement sigmoid function
return 1/(1 + np.exp(-x))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--input_shape', help="caffe's caffemodel file path",default=(480,360))
parser.add_argument('--img_path', help="test image path", default="d:/cat.jpg")
parser.add_argument('--onnx_path', help="onnx model file path", default="mobileretina.onnx")
# parser.add_argument('--onnx_path', help="onnx model file path", default=r"pelee_detector.onnx")
# parser.add_argument('--onnx_path', help="onnx model file path", default="yolov3.onnx")
parser.add_argument('--confidence_threshold', help="confidence threshold", default=0.9, type=float)
parser.add_argument('--nms_thres', help="nms threshold", default=0.6, type=float)
parser.add_argument('--top_k',help="to choice anchors", default=20, type=int)
parser.add_argument('--nms_threshold',help="to choice anchors", default=0.4, type=float)
parser.add_argument('--show_image',help="to choice anchors", default=True, type=bool)
args = parser.parse_args()
cfg = cfg_peleenet
onnx_path = args.onnx_path
session = onnxruntime.InferenceSession(onnx_path)
input_shape = args.input_shape #模型输入尺寸
nms_threshold = args.nms_thres
img_path = args.img_path
print("image path:",img_path)
print("onnx model path:",onnx_path)
# list_path = r"D:\project\face\face_mask\2020\0/"
list_path = r"D:\input\faces/"
g = os.walk(list_path)
files = ['%s\\%s' % (i[0], j) for i in g for j in i[-1] if
j.endswith('jpg')]
width=input_shape[0]
height=input_shape[1]
scale = np.array([width, height, width, height])
scale1 = np.array([width, height, width, height,
width, height, width, height,
width, height])
resize_level=1
count = 0
ok_count = 0
priorbox = PriorBox(cfg, image_size=(height, width))
priors = priorbox.forward()
# vc = cv2.VideoCapture(r"D:\project\face\Face-Track-Detect-Extract\videos\2_Obama.mp4") # 读入视频文件
vc = cv2.VideoCapture(0) # 读入视频文件
while True: # 循环读取视频帧
rval, img_raw = vc.read()
# for file in files:
# file=r"d:/7_Cheering_Cheering_7_426.png"
# img_raw = cv2.imread(file)
if img_raw is None:
# print(file)
continue
start = time.time()
img_raw = cv2.resize(img_raw, input_shape)
img=cv2.cvtColor(img_raw,cv2.COLOR_BGR2RGB)
img = np.float32(img)
img -= (104, 117, 123)
image = img[:, :, ::-1].transpose((2, 0, 1))
TestData = image[np.newaxis, :, :, :]
start2=time.time()
inname = [input.name for input in session.get_inputs()][0]
outname = [output.name for output in session.get_outputs()]
loc, conf,landmarks = session.run(outname, {inname:TestData})
print('net time', time.time() - start2)
start1=time.time()
boxes = decode(np.squeeze(loc, axis=0), priors, cfg['variance'])
boxes = boxes * scale / resize_level
scores = np.squeeze(conf, axis=0)[:,1]
landmarks = decode_landm(np.squeeze(landmarks, axis=0), priors, cfg['variance'])
landmarks = landmarks * scale1 / resize_level
# ignore low scores
inds = np.where(scores > args.confidence_threshold)[0]
boxes = boxes[inds]
landmarks = landmarks[inds]
scores = scores[inds]
# keep top-K before NMS
order = scores.argsort()[::-1][:args.top_k]
boxes = boxes[order]
landmarks = landmarks[order]
scores = scores[order]
# do NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(dets, args.nms_threshold)
dets = dets[keep, :]
landmarks = landmarks[keep, :]
print('time',time.time()-start,start1-start)
dets = np.concatenate((dets, landmarks), axis=1)
if args.show_image:
for box in dets:
if (box[3] < - box[1]) or (box[2] < - box[0]):
continue
elif box[0] < 0 or box[1] < 0:
box[0] = max(0, box[0])
box[1] = max(0, box[1])
if (box[3] + box[1] > 2 * img_raw.shape[0]) or (box[0] + box[2] > 2 * img_raw.shape[1]):
continue
elif box[3] > img_raw.shape[0] or box[2] > img_raw.shape[1]:
box[3] = min(img_raw.shape[0], box[3])
box[2] = max(img_raw.shape[1], box[2])
if (box[2] - box[0]) > 4 * (box[3] - box[1]) or (box[2] - box[0]) * 4 < (box[3] - box[1]):
continue
# if box[3]*resize_level > img_raw.shape[0] + 5 or box[2]*resize_level > img_raw.shape[1] + 5:
# # print('out_show', img_raw.shape, int(box[2]*resize_level),int(box[3]*resize_level))
# continue
text = "{:.2f}".format(box[4])
box = list(map(int, box))
cv2.rectangle(img_raw, (box[0] * resize_level, box[1] * resize_level),
(box[2] * resize_level, box[3] * resize_level), (0, 0, 255), 1)
cv2.circle(img_raw, (box[5], box[6]), 1, (0, 0, 255), 4)
cv2.circle(img_raw, (box[7], box[8]), 1, (0, 255, 255), 4)
cv2.circle(img_raw, (box[9], box[10]), 1, (255, 0, 255), 4)
cv2.circle(img_raw, (box[11], box[12]), 1, (0, 255, 0), 4)
cv2.circle(img_raw, (box[13], box[14]), 1, (255, 0, 0), 4)
cx = box[0] * resize_level + 18
cy = box[1] * resize_level + 18
# cv2.putText(img_raw, text, (cx, cy), cv2.FONT_HERSHEY_DUPLEX, 0.3, (0, 255, 0))
# landms
# cv2.circle(img_raw, (b[5], b[6]), 1, (0, 0, 255), 4)
# cv2.circle(img_raw, (b[7], b[8]), 1, (0, 255, 255), 4)
# cv2.circle(img_raw, (b[9], b[10]), 1, (255, 0, 255), 4)
# cv2.circle(img_raw, (b[11], b[12]), 1, (0, 255, 0), 4)
# cv2.circle(img_raw, (b[13], b[14]), 1, (255, 0, 0), 4)
# save image
if img_raw.shape[0] > 1080:
fy = 1070 / img_raw.shape[0]
img_raw = cv2.resize(img_raw, (0, 0), fx=fy, fy=fy, interpolation=cv2.INTER_NEAREST)
cv2.imshow("sdf", img_raw)
cv2.waitKey(1)
# print(time.time()-start,"inputs name:", inname, "outputs name:", outname,prediction)
# drawBox(boxes,img,img_shape)
if __name__ == '__main__':
main()
来源:oschina
链接:https://my.oschina.net/u/4387439/blog/3236680