Empty functions are equal in Agda (without functional extensionality)

狂风中的少年 提交于 2020-04-16 02:34:06

问题


Can I prove that two empty functions (functions from the empty domain) are equal?

More concretely, is it possible to prove in Agda the following: eqf : ∀ {A : Set} (f g : ⊥ → A) → f ≡ g

Edit: as @Sassa-NF points out in the comments, if extensionality is present, then this can be proven. I am interested in whether this can be proven without extensionality.


回答1:


No, this is not possible to prove in plain Martin-Löf Type Theory (and hence should also be unprovable in Agda without extra assumptions). The paper "The Next 700 Syntactic Models of Type Theory" (https://hal.inria.fr/hal-01445835/file/main.pdf) describes a general technique to construct models of type theory that refute claims like this.



来源:https://stackoverflow.com/questions/60849180/empty-functions-are-equal-in-agda-without-functional-extensionality

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!