题目链接
题意:有n个农场,m条双向路径u,v,t表示从u农场到v农场要花t时间,w个虫洞u,v,t,表示从u穿越到v时间倒流t。
问从任意一点出发,再回到出发点,能否在出发前时间到达出发点(时间倒流)。
解法:Bellman-Ford算法(O(VE))
算法核心:对所有边进行V-1次松弛操作,每一次松弛操作最少确定一点到源点的最短路径,所以最多v-1次可求出所有点到源点的最短路径。最少一次就可以确定所有点的最短路径,即一条链依次更新。
判负环:如果存在负权环,则不存在最短路径。可以一直进行松弛操作。所以第V次对所有边进行松弛时,可以判断是否存在负权。
学习博客
//#include<bits/stdc++.h> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <string> #include <stdio.h> #include <queue> #include <stack> #include <map> #include <set> #include <string.h> #include <vector> #include <stdlib.h> using namespace std; typedef long long ll ; #define int ll #define mod 100 #define gcd(m,n) __gcd(m, n) #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) //int lcm(int a , int b){return a*b/gcd(a,b);} //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define pb push_back #define mp make_pair #define all(v) v.begin(),v.end() #define size(v) (int)(v.size()) #define cin(x) scanf("%lld" , &x); const int N = 1e4+9; const int maxn = 5e2+9; const double esp = 1e-6; int dis[maxn] , ans; int n , m , q ; struct node{ int u , v , w; }edge[N]; bool Bellman_Ford(int u){ fill(dis , dis+maxn , INF); dis[u] = 0 ; rep(i , 1 , n-1){ int flag = 1 ; rep(j , 1 , ans){ if(dis[edge[j].u] + edge[j].w < dis[edge[j].v]){ dis[edge[j].v] = dis[edge[j].u] + edge[j].w; flag = 0 ; } } if(flag) break;//表明所有最短路径已经确定没有可松弛操作 } rep(i , 1 , ans){ if(dis[edge[i].u] + edge[i].w < dis[edge[i].v]){ return false; } } return true; } void init(){ ans = 0 ; } void solve(){ init(); scanf("%lld%lld%lld" , &n , &m , &q); rep(i , 1 , m){ int u , v , w ; scanf("%lld%lld%lld" , &u , &v , &w); edge[++ans].u = u , edge[ans].v = v ; edge[ans].w = w ; edge[++ans].u = v , edge[ans].v = u ; edge[ans].w = w ; } rep(i , 1 , q){ int u , v , w ; scanf("%lld%lld%lld" , &u , &v , &w); edge[++ans].u = u , edge[ans].v = v ; edge[ans].w = -w ; } if(Bellman_Ford(1)){ cout << "NO" << endl; }else{ cout << "YES" << endl; } } signed main() { //ios::sync_with_stdio(false); int t ; scanf("%lld" , &t); while(t--) solve(); }
spfa算法是对Bellman-Ford的算法的队列优化。(O(kE))k表示节点平均入队列次数,一般k<=2
spfa算法核心:用队列来保存待优化的节点,优化时每次取出队首结点u,并且用结点u当前的最短路径估计值对离开结点u所指向的结点v进行松弛操作,
即判断是否有dis[v]>dis[u]+w(w是连接u与v的边的长度),若有,则更新dis[v]。如果结点v的最短路径估计值有所调整,且结点v不在当前的队列中,
就将结点v放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止
判断负环:根据bellman算法判断负环条件,可知spfa判断负环条件为,一个节点进入队列超过V次,即存在负环。
//#include<bits/stdc++.h> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <string> #include <stdio.h> #include <queue> #include <stack> #include <map> #include <set> #include <string.h> #include <vector> #include <stdlib.h> using namespace std; typedef long long ll ; #define int ll #define mod 100 #define gcd(m,n) __gcd(m, n) #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) //int lcm(int a , int b){return a*b/gcd(a,b);} //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define pb push_back #define mp make_pair #define all(v) v.begin(),v.end() #define size(v) (int)(v.size()) #define cin(x) scanf("%lld" , &x); const int N = 1e4+9; const int maxn = 5e2+9; const double esp = 1e-6; int head[maxn] , tol , dis[maxn] , vis[maxn] , ans[maxn]; int n , m , q ; struct node{ int v , w , next; }g[N]; void add(int u , int v , int w){ g[++tol] = {v , w , head[u]}; head[u] = tol; } bool spfa(int u){ ME(vis , 0); fill(dis , dis+maxn , INF); dis[u] = 0 , vis[u] = 1;ans[u]++; queue<int>q; q.push(u); while(!q.empty()){ int a = q.front();q.pop(); vis[a] = 0 ; for(int i = head[a] ; i ; i = g[i].next){ int v = g[i].v; int w = g[i].w; if(dis[a] + w < dis[v]){ dis[v] = dis[a] + w ; if(!vis[v]){ q.push(v); vis[v] = 1 ; ans[v]++; if(ans[v] > n){ return false; } } } } } return true; } void init(){ tol = 0 ; ME(head , 0); ME(ans , 0); } void solve(){ init(); int u , v , w; scanf("%lld%lld%lld" , &n , &m , &q); rep(i , 1 , m){ scanf("%lld%lld%lld" , &u , &v, &w); add(u , v , w); add(v , u , w); } rep(i , 1 , q){ int u , v , w ; scanf("%lld%lld%lld" , &u , &v , &w); add(u , v , -w); } if(spfa(1)){ cout << "NO" << endl; }else{ cout << "YES" << endl; } } signed main() { //ios::sync_with_stdio(false); int t ; scanf("%lld" , &t); while(t--) solve(); }
来源:https://www.cnblogs.com/nonames/p/12657562.html