【赵强老师】在Spark SQL中读取JSON文件

拈花ヽ惹草 提交于 2020-04-05 17:17:04
Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。为什么要学习Spark SQL?如果大家了解Hive的话,应该知道它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!同时Spark SQL也支持从Hive中读取数据。
Spark SQL也能自动解析JSON数据集的Schema,读取JSON数据集为DataFrame格式。读取JSON数据集方法为SQLContext.read().json()。该方法将String格式的RDD或JSON文件转换为DataFrame。
需要注意的是,这里的JSON文件不是常规的JSON格式。JSON文件每一行必须包含一个独立的、自满足有效的JSON对象。如果用多行描述一个JSON对象,会导致读取出错。
  • 需要用到的测试数据:people.json
{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19} 
  • 定义路径
val path ="/root/temp/people.json" 
  • 读取Json文件,生成DataFrame:
val peopleDF = spark.read.json(path) 
  • 打印Schema结构信息
peopleDF.printSchema()

 

  • 创建临时视图
peopleDF.createOrReplaceTempView("people") 
  • 执行查询
spark.sql("SELECT name FROM people WHERE age=19").show

 

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!