2020/4/4 软件工程第二次作业

南楼画角 提交于 2020-04-04 11:16:20

一、问题描述


题目

  最大连续子数组和(最大子段和)

问题:

  给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n
  例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。

 

二、解决思路与方法


  本问题可以通过暴力,动态规划等方法解决,在查询资料与研究后,我决定使用分治策略来解决该问题。

思路:

  把序列分为左右两段,中间分界点为center = (right-left)/2+left;

  递归计算左段的最大字段与leftsum;

  递归计算右段的最大子段与rightsum;

  记center到a1最大和S1;

  记center到an最大和S2;

  max{leftsum,rightsum,S1+S2};

 

最大子段和可能出现在三个位置:

  A:左子数组 

  B:右子数组 

  C:过center中间某部分组成的子数组

具体解决方法如下:

  a.计算 left 到 center 的最大和,记作 leftSum。从 center出发,每次向左边扩张一步,并且记录当前的值S1,如果当前的和比上次的和大,就更新S1,一直向左扩张到位置 Left。 

  b.计算从 center+1 到 right的最大和,记作 rightSum。从 center+1出发,每次扩张一步,计算当前的和 为S2,如果当前的值比上次的和 大,那么,就更新S2的值,一直向右扩张到位置Right。

  c.计算跨边界的和。 以center为中心分别向两边计算和。过center的连续值的和,S1+S2的值 Sum。 这个就是跨边界的和。

  上面三种情况考虑计算完成后,最后一步就是,比较三个值中的最大值,取最大值就可以了。

 

三、C++源码


已将本问题C++源码上传至该网站:https://github.com/NisannTomo/TOMO/blob/master/2_1%20nMax

 

四、测试用例


 

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!