java笔试之放苹果

北战南征 提交于 2020-03-26 20:03:53

题目描述:M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

输入:每个用例包含二个整数M和N。0<=m<=10,1<=n<=10。

样例输入

7 3 

样例输出

8

 

/**

* 计算放苹果方法数目

* 输入值非法时返回-1

* 1 <= m,n <= 10

* @param m 苹果数目

* @param n 盘子数目数

* @return 放置方法总数

*/

 

 分析:
        设f(m,n) 为m个苹果,n个盘子的放法数目,先对n作讨论:
        当n>m:f(m,n) = f(m,m) (必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响);
        当n<=m:不同的放法可以分成两类:
        1、有空盘子(至少一个盘子为空),把m个苹果放在除空盘外其余的盘子里,即相当于f(m,n-1); 
        2、所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,共拿走n*1个苹果,不影响不同放法的数目,即f(m-n,n)。
        而总的放苹果的放法数目等于两者的和,即 f(m,n) =f(m,n-1)+f(m-n,n)
    递归出口条件说明:
        当n=1时,所有苹果必然放在一个盘子里,所以返回1;
        当没有苹果可放时,定义为1种放法;
        递归的两条路,第一条n会逐渐减少,终会到达出口n==1;
        第二条m会逐渐减少,因为n>m时,我们会return f(m,m) 所以终会到达出口m==0.
package test;

import java.util.Scanner;

public class exam11 {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        while (scanner.hasNext()) {
            // m个苹果,n个盘子
            int m = scanner.nextInt();
            int n = scanner.nextInt();
            System.out.println(putApple(m, n));
        }
        scanner.close();
    }

    public static int putApple(int m, int n) {
        if (m < 0 || n < 1) {
            return 0;
        } else if (m == 0 || n == 1) {
            return 1;
        } else if (m < n) {
            return putApple(m, m);
        } else {
            // System.out.print(m);
            return putApple(m, n - 1) + putApple(m - n, n);
        }
    }
}

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!