http://www.cnblogs.com/Eva-J/articles/7228075.html#_label10
collections模块:
在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。
1.namedtuple:生成可以使用名字来访问元素内容的tuple。
#namedtuple('名称', [属性list]): from collections import namedtuple Point=namedtuple('point',['x','y']) p=Point(1,2) print(p.x,p.y)
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象。deque除了实现list的append()
和pop()
外,还支持appendleft()
和popleft()
,这样就可以非常高效地往头部添加或删除元素。
from collections import deque d1=deque([1,2,'c',5]) d1.append('afg') d1.appendleft(9) print(d1) #结果deque([9, 1, 2, 'c', 5, 'afg'])
3.Counter: 计数器,主要用来计数。Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。
from collections import Counter print(Counter('abcdeabcdabcaba')) #执行结果Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
4.OrderedDict: 有序字典 :
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。如果要保持Key的顺序,可以用OrderedDict.
5.defaultdict: 带有默认值的字典。
from collections import defaultdict values = [11, 22, 33,44,55,66,77,88,99,90] my_dict = defaultdict(list) for value in values: if value>66: my_dict['k1'].append(value) else: my_dict['k2'].append(value)
time模块:
#常用方法
1.time.sleep(secs)
(线程)推迟指定的时间运行。单位为秒。
2.time.time()
获取当前时间戳
表示时间的三种方式
在Python中,通常有这三种方式来表示时间:时间戳、元组(struct_time)、格式化的时间字符串:
(1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。
(2)格式化的时间字符串(Format String): ‘1999-12-06’
%y 两位数的年份表示(00-99) %Y 四位数的年份表示(000-9999) %m 月份(01-12) %d 月内中的一天(0-31) %H 24小时制小时数(0-23) %I 12小时制小时数(01-12) %M 分钟数(00=59) %S 秒(00-59) %a 本地简化星期名称 %A 本地完整星期名称 %b 本地简化的月份名称 %B 本地完整的月份名称 %c 本地相应的日期表示和时间表示 %j 年内的一天(001-366) %p 本地A.M.或P.M.的等价符 %U 一年中的星期数(00-53)星期天为星期的开始 %w 星期(0-6),星期天为星期的开始 %W 一年中的星期数(00-53)星期一为星期的开始 %x 本地相应的日期表示 %X 本地相应的时间表示 %Z 当前时区的名称 %% %号本身
(3)元组(struct_time) :struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等)
索引(Index) | 属性(Attribute) | 值(Values) |
---|---|---|
0 | tm_year(年) | 比如2011 |
1 | tm_mon(月) | 1 - 12 |
2 | tm_mday(日) | 1 - 31 |
3 | tm_hour(时) | 0 - 23 |
4 | tm_min(分) | 0 - 59 |
5 | tm_sec(秒) | 0 - 60 |
6 | tm_wday(weekday) | 0 - 6(0表示周一) |
7 | tm_yday(一年中的第几天) | 1 - 366 |
8 | tm_isdst(是否是夏令时) | 默认为0 |
首先,我们先导入time模块,来认识一下python中表示时间的几种格式:
#导入时间模块 >>>import time #时间戳 >>>time.time() 1500875844.800804 #时间字符串 >>>time.strftime("%Y-%m-%d %X") '2017-07-24 13:54:37' >>>time.strftime("%Y-%m-%d %H-%M-%S") '2017-07-24 13-55-04' #时间元组:localtime将一个时间戳转换为当前时区的struct_time time.localtime() time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=13, tm_min=59, tm_sec=37, tm_wday=0, tm_yday=205, tm_isdst=0)
小结:时间戳是计算机能够识别的时间;时间字符串是人能够看懂的时间;元组则是用来操作时间的
几种格式之间的转换
#时间戳-->结构化时间 #time.gmtime(时间戳) #UTC时间,与英国伦敦当地时间一致 #time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间 >>>time.gmtime(1500000000) time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0) >>>time.localtime(1500000000) time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0) #结构化时间-->时间戳 #time.mktime(结构化时间) >>>time_tuple = time.localtime(1500000000) >>>time.mktime(time_tuple) 1500000000.0
#结构化时间-->字符串时间 #time.strftime("格式定义","结构化时间") 结构化时间参数若不传,则显示当前时间 >>>time.strftime("%Y-%m-%d %X") '2017-07-24 14:55:36' >>>time.strftime("%Y-%m-%d",time.localtime(1500000000)) '2017-07-14' #字符串时间-->结构化时间 #time.strptime(时间字符串,字符串对应格式) >>>time.strptime("2017-03-16","%Y-%m-%d") time.struct_time(tm_year=2017, tm_mon=3, tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=75, tm_isdst=-1) >>>time.strptime("07/24/2017","%m/%d/%Y") time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)
#结构化时间 --> %a %b %d %H:%M:%S %Y串 #time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串 >>>time.asctime(time.localtime(1500000000)) 'Fri Jul 14 10:40:00 2017' >>>time.asctime() 'Mon Jul 24 15:18:33 2017' #时间戳 --> %a %b %d %H:%M:%S %Y串 #time.ctime(时间戳) 如果不传参数,直接返回当前时间的格式化串 >>>time.ctime() 'Mon Jul 24 15:19:07 2017' >>>time.ctime(1500000000) 'Fri Jul 14 10:40:00 2017'
import time true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S')) time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S')) dif_time=time_now-true_time struct_time=time.gmtime(dif_time) print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1, struct_time.tm_mday-1,struct_time.tm_hour, struct_time.tm_min,struct_time.tm_sec))
random模块
>>> import random #随机小数 >>> random.random() # 大于0且小于1之间的小数 0.7664338663654585 >>> random.uniform(1,3) #大于1小于3的小数 1.6270147180533838 #恒富:发红包 #随机整数 >>> random.randint(1,5) # 大于等于1且小于等于5之间的整数 >>> random.randrange(1,10,2) # 大于等于1且小于10之间的奇数 #随机选择一个返回 >>> random.choice([1,'23',[4,5]]) # #1或者23或者[4,5] #随机选择多个返回,返回的个数为函数的第二个参数 >>> random.sample([1,'23',[4,5]],2) # #列表元素任意2个组合 [[4, 5], '23'] #打乱列表顺序 >>> item=[1,3,5,7,9] >>> random.shuffle(item) # 打乱次序 >>> item [5, 1, 3, 7, 9] >>> random.shuffle(item) >>> item [5, 9, 7, 1, 3]
练习:生成随机验证码
import random def v_code(): code = '' for i in range(5): num=random.randint(0,9) alf=chr(random.randint(65,90)) add=random.choice([num,alf]) code="".join([code,str(add)]) return code print(v_code())
os模块
os模块是与操作系统交互的一个接口
os.makedirs('dirname1/dirname2') 可生成多层递归目录 os.removedirs('dirname1') 若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推 os.mkdir('dirname') 生成单级目录;相当于shell中mkdir dirname os.rmdir('dirname') 删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname os.listdir('dirname') 列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印 os.remove() 删除一个文件 os.rename("oldname","newname") 重命名文件/目录 os.stat('path/filename') 获取文件/目录信息 os.system("bash command") 运行shell命令,直接显示 os.popen("bash command).read() 运行shell命令,获取执行结果 os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname") 改变当前脚本工作目录;相当于shell下cd
os.path
os.path.abspath(path) 返回path规范化的绝对路径 os.path.split(path) 将path分割成目录和文件名二元组返回 os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素 os.path.basename(path) 返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。即os.path.split(path)的第二个元素 os.path.exists(path) 如果path存在,返回True;如果path不存在,返回False os.path.isabs(path) 如果path是绝对路径,返回True os.path.isfile(path) 如果path是一个存在的文件,返回True。否则返回False os.path.isdir(path) 如果path是一个存在的目录,则返回True。否则返回False os.path.join(path1[, path2[, ...]]) 将多个路径组合后返回,第一个绝对路径之前的参数将被忽略 os.path.getatime(path) 返回path所指向的文件或者目录的最后访问时间 os.path.getmtime(path) 返回path所指向的文件或者目录的最后修改时间 os.path.getsize(path) 返回path的大小
注意:os.stat('path/filename') 获取文件/目录信息 的结构说明
stat 结构: st_mode: inode 保护模式 st_ino: inode 节点号。 st_dev: inode 驻留的设备。 st_nlink: inode 的链接数。 st_uid: 所有者的用户ID。 st_gid: 所有者的组ID。 st_size: 普通文件以字节为单位的大小;包含等待某些特殊文件的数据。 st_atime: 上次访问的时间。 st_mtime: 最后一次修改的时间。 st_ctime: 由操作系统报告的"ctime"。在某些系统上(如Unix)是最新的元数据更改的时间,在其它系统上(如Windows)是创建时间(详细信息参见平台的文档)。
os.sep 输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/" os.linesep 输出当前平台使用的行终止符,win下为"\r\n",Linux下为"\n" os.pathsep 输出用于分割文件路径的字符串 win下为;,Linux下为: os.name 输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
sys模块
sys模块是与python解释器交互的一个接口
sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0),错误退出sys.exit(1) sys.version 获取Python解释程序的版本信息 sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值 sys.platform 返回操作系统平台名称
import sys try: sys.exit(1) except SystemExit as e: print(e)
序列化模块
什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。
比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给? 现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。 但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。 你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢? 没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串, 但是你要怎么把一个字符串转换成字典呢? 聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。 eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。 BUT!强大的函数有代价。安全性是其最大的缺点。 想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。 而使用eval就要担这个风险。 所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)
序列化的目的
json
Json模块提供了四个功能:dumps、dump、loads、load
import json dic = {'k1':'v1','k2':'v2','k3':'v3'} str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串 print(type(str_dic),str_dic) #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"} #注意,json转换完的字符串类型的字典中的字符串是由""表示的 dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典 #注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示 print(type(dic2),dic2) #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}] str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型 print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}] list_dic2 = json.loads(str_dic) print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]
import json f = open('json_file','w') dic = {'k1':'v1','k2':'v2','k3':'v3'} json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件 f.close() f = open('json_file') dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回 f.close() print(type(dic2),dic2)
import json f = open('file','w') json.dump({'国籍':'中国'},f) ret = json.dumps({'国籍':'中国'}) f.write(ret+'\n') json.dump({'国籍':'美国'},f,ensure_ascii=False) ret = json.dumps({'国籍':'美国'},ensure_ascii=False) f.write(ret+'\n') f.close()
Serialize obj to a JSON formatted str.(字符串表示的json对象) Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。) If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse). If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity). indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。 default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError. sort_keys:将数据根据keys的值进行排序。 To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.
import json data = {'username':['李华','二愣子'],'sex':'male','age':16} json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False) print(json_dic2)
pickle
json & pickle 模块
用于序列化的两个模块
- json,用于字符串 和 python数据类型间进行转换
- pickle,用于python特有的类型 和 python的数据类型间进行转换
pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化)
import pickle dic = {'k1':'v1','k2':'v2','k3':'v3'} str_dic = pickle.dumps(dic) print(str_dic) #一串二进制内容 dic2 = pickle.loads(str_dic) print(dic2) #字典 import time struct_time = time.localtime(1000000000) print(struct_time) f = open('pickle_file','wb') pickle.dump(struct_time,f) f.close() f = open('pickle_file','rb') struct_time2 = pickle.load(f) print(struct_time2.tm_year)
这时候机智的你又要说了,既然pickle如此强大,为什么还要学json呢? 这里我们要说明一下,json是一种所有的语言都可以识别的数据结构。 如果我们将一个字典或者序列化成了一个json存在文件里,那么java代码或者js代码也可以拿来用。 但是如果我们用pickle进行序列化,其他语言就不能读懂这是什么了~ 所以,如果你序列化的内容是列表或者字典,我们非常推荐你使用json模块 但如果出于某种原因你不得不序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,那么就可以使用pickle
来源:https://www.cnblogs.com/geng-xiaoqiaoliushui/p/10349094.html