Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3分析:首先我们从分类的角度考虑,当BST的根节点分别是1,2,..n时对应的BST树的个数。当我们确定了BST的根节点k,那么以k为根节点的BST的个数等于左BST子树的个数乘以右BST子树的个数。还有一点值得注意的是对于给定的节点数BST的个数是一定的,根据这个我们可以做进一步的优化。代码如下:
class Solution { public: int numTrees(int n) { if(n == 0 || n == 1) return 1; int result = 0; for(int i = 1; i <= n/2; i++) result += numTrees(i-1)*numTrees(n-i); return (n%2 == 0)?(2*result):(pow(numTrees(n/2),2) + 2*result); } };
此外,有这句"当我们确定了BST的根节点k,那么以k为根节点的BST的个数等于左BST子树的个数乘以右BST子树的个数”,我们可以用动态规划的方法解。递推公式可写为:
f(i) = sum(f(k-1)*f(i-k))其中k = 1,2,...i. 时间复杂度为O(n^2),空间复杂度为O(n)。代码如下:
class Solution { public: int numTrees(int n) { vector<int> f(n+1, 0); f[0] = 1; for(int i = 1; i <= n; i++) for(int k = 1; k <= i; k++) f[i] += f[k-1] * f[i-k]; return f[n]; } };
来源:https://www.cnblogs.com/Kai-Xing/p/4204898.html