How to partition data dynamically in this use-case

一世执手 提交于 2020-03-21 11:05:53

问题


I am using spark-sql-2.4.1version. I have a code something like below. I have scenario like below.

val superDataset = // load the whole data set of student marks records ... assume have 10 years data
val selectedYrsDataset  = superDataset.repartition("--GivenYears--") //i.e. GivenYears are 2010,2011

One the selectedYrsDataset   I need to calculate year wise toppers  on over all country-wise, state-wise, colleage-wise.

How to do this kind of use-case ? Is there any possibility of doing it dynamic parition i.e. in each-new-logic-step accordingly we add another partition ( column) in order to do repartition on already partitioned dataset , in such way to avoid major shuffling.


回答1:


Sample Dataframe :

+----+-------+-----+-------+-----+
|year|country|state|college|marks|
+----+-------+-----+-------+-----+
|2019|  India|    A|     AC|   15|
|2019|  India|    A|     AC|   25|
|2019|  India|    A|     AC|   35|
|2019|  India|    A|     AD|   40|
|2019|  India|    B|     AC|   15|
|2019|  India|    B|     AC|   50|
|2019|  India|    B|     BC|   65|
|2019|    USA|    A|     UC|   15|
|2019|    USA|    A|     UC|   65|
|2019|    USA|    A|     UD|   45|
|2019|    USA|    B|     UC|   44|
|2019|    USA|    B|     MC|   88|
|2019|    USA|    B|     MC|   90|
|2020|  India|    A|     AC|   65|
|2020|  India|    A|     AC|   33|
|2020|  India|    A|     AC|   55|
|2020|  India|    A|     AD|   70|
|2020|  India|    B|     AC|   88|
|2020|  India|    B|     AC|   60|
|2020|  India|    B|     BC|   45|
|2020|    USA|    A|     UC|   85|
|2020|    USA|    A|     UC|   55|
|2020|    USA|    A|     UD|   32|
|2020|    USA|    B|     UC|   64|
|2020|    USA|    B|     MC|   78|
|2020|    USA|    B|     MC|   80|
+----+-------+-----+-------+-----+

In order to do multi dimensional aggregation you can do it in two ways i.e by using grouping sets or by using rollup in Spark. To read more about these multidimensional aggregation follow this link Multi-Dimensional Aggregation

The solution using rollup is provided as follows:

val ans_df = df.rollup("year","country","state","college").agg(max("marks").as("Marks"))

The result :

+----+-------+-----+-------+-----+
|year|country|state|college|Marks|
+----+-------+-----+-------+-----+
|2020|  India|    A|     AC|   65|
|2019|  India|    B|     BC|   65|
|2020|  India|    B|   null|   88|
|2019|    USA|    B|     UC|   44|
|2020|  India|    B|     AC|   88|
|2020|    USA| null|   null|   85|
|2019|  India|    A|     AC|   35|
|2019|    USA|    B|     MC|   90|
|2019|  India|    A|     AD|   40|
|2019|    USA|    A|     UD|   45|
|2019|    USA| null|   null|   90|
|2020|    USA|    A|     UD|   32|
|null|   null| null|   null|   90|
|2019|    USA|    B|   null|   90|
|2020|  India| null|   null|   88|
|2019|    USA|    A|   null|   65|
|2019|  India|    B|   null|   65|
|2019|    USA|    A|     UC|   65|
|2020|  India|    B|     BC|   45|
|2020|    USA|    B|     UC|   64|
+----+-------+-----+-------+-----+

Moreover, as asked spark makes sure of doing this operation in an optimal manner and makes use of the already partitioned data on doing a groupBy on an additional column.Example - On doing a groupBy on key (year,country,state,college) the data already grouped on key (year,country,state) will be used, thereby reducing significant computation.



来源:https://stackoverflow.com/questions/60507750/how-to-partition-data-dynamically-in-this-use-case

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!