哈夫曼树应用——九度OJ题目1107:搬水果

巧了我就是萌 提交于 2020-03-19 08:42:55

哈夫曼算法

1、将所有结点放入集合K。
2、若集合K中剩余结点大于2个,则取出其中权值最小的两个结点,构造他们同时为某个新节点的左右儿子,该新节点是他们共同的双亲结点,设定它的权值为其两个儿子结点的权值和。并将该父亲结点放入集合K。重复步骤2或3。
3、若集合K中仅剩余一个结点,该结点即为构造出的哈夫曼树数的根结点,所有构造得到的中间结点(即哈夫曼树上非叶子结点)的权值和即为该哈夫曼树的带权路径和。

注:使用STL中的优先队列priority_queue可以很容易地实现哈夫曼树,详情见例题。

题目1107:搬水果

题目描述:
在一个果园里,小明已经将所有的水果打了下来,并按水果的不同种类分成了若干堆,小明决定把所有的水果合成一堆。每一次合并,小明可以把两堆水果合并到一起,消耗的体力等于两堆水果的重量之和。当然经过 n‐1 次合并之后,就变成一堆了。小明在合并水果时总共消耗的体力等于每次合并所耗体力之和。
假定每个水果重量都为 1,并且已知水果的种类数和每种水果的数目,你的任务是设计出合并的次序方案,使小明耗费的体力最少,并输出这个最小的体力耗费值。例如有 3 种水果,数目依次为 1,2,9。可以先将 1,2 堆合并,新堆数目为3,耗费体力为 3。然后将新堆与原先的第三堆合并得到新的堆,耗费体力为 12。所以小明总共耗费体力=3+12=15,可以证明 15 为最小的体力耗费值。
输入:
每组数据输入包括两行,第一行是一个整数 n(1<=n<=10000),表示水果的种类数,如果 n 等于 0 表示输入结束,且不用处理。第二行包含 n 个整数,用空格分隔,第 i 个整数(1<=ai<=1000)是第 i 种水果的数目。
输出:
对于每组输入,输出一个整数并换行,这个值也就是最小的体力耗费值。输入数据保证这个值小于 2^31。
样例

输入:
3
9 1 2
0
样例输出:
15
来源:

2011年吉林大学计算机研究生机试真题

----------------------------------------------------------------

C++代码及注释

#include <iostream>
#include <queue>
//1107:搬水果
using namespace std;

int main()
{
	int n;
	cin>>n;
	while(n!=0){
		//输入和存储
		priority_queue<int, vector<int>, greater<int> > minPQ; //小顶堆保存水果重量
		int x;
		for(int i=0; i<n; i++){
			cin>>x;
			minPQ.push(x);
		}
		//计算总重量
		int sum=0;
		while(minPQ.size()>1){
			//取出最小的两个元素
			int a=minPQ.top();
			minPQ.pop();
			int b=minPQ.top();
			minPQ.pop();
			//求和
			sum+=(a+b);
			//把新得到的父节点的重量放入堆中
			minPQ.push(a+b);
		}
		//输出总重量
		cout<<sum<<endl;
		//输入n
		cin>>n;
	}

	return 0;
}
提交结果

Accepted  内存:1520KB  代码长度:539B 耗时:50MS


易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!