高阶函数和三元运算符及lambda的使用

会有一股神秘感。 提交于 2020-03-12 01:33:50

1. 三元运算

  1. 三元运算格式: result=值1 if x<y else 值2 if条件成立result=1,否则result=2
  2. **作用:**三元运算,又称三目运算,主要作用是减少代码量,是对简单的条件语句的缩写

三元运算

name = 'Tom' if 1 == 1 else 'fly'
print(name)
# 运行结果: Tom

三元运算与lambda结合

f = lambda x:x if x % 2 != 0 else x + 100
print(f(10))                    # 110

2. lambda基本使用

  1. lambda只是一个表达式,函数体比def简单很多。
  2. lambda的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。
  3. lambda表达式是起到一个函数速写的作用。允许在代码内嵌入一个函数的定义。
  4. **格式:**lambda的一般形式是关键字lambda后面跟一个或多个参数,紧跟一个冒号,之后是一个表达式。

例:

f = lambda x,y,z:x+y+z
print(f(1,2,3))                    # 6

my_lambda = lambda arg : arg + 1
print(my_lambda(10))               # 11

3. filter与lambda表达式结合使用

  1. **filter()**函数可以对序列做过滤处理,就是说可以使用一个自定的函数过滤一个序列,把序列的每一项传到自定义

的过滤函数里处理,并返回结果做过滤。最终一次性返回过滤后的结果。

2. filter()函数有两个参数:

第一个,自定函数名,必须的

第二个,需要过滤的列,也是必须的

利用 filter、lambda表达式 获取l1中元素小于33的所有元素 l1 = [11, 22, 33, 44, 55]

l1= [11,22,33,44,55]
a = filter(lambda x: x<33, l1)
print(list(a))

自定义函数代替lambda实现相同功能

l1= [11,22,33,44,55]
def func(num):
    if num>33:
        return num
result=filter(func,l1)
print(list(result))

4、map与lambda表达式结合使用

1. map使用:第一个参数接收一个函数名,第二个参数接收一个可迭代对象

map的基本使用

lt = [1, 2, 3, 4, 5, 6]
def add(num):
    return num + 1
rs = map(add, lt)
print(list(rs))           #运行结果:  [2, 3, 4, 5, 6, 7]

利用map,lambda表达式将所有偶数元素加100

l1= [11,22,33,44,55]
ret = map(lambda x:x if x % 2 != 0 else x + 100,l1)
print(list(ret))
# 运行结果: [11, 122, 33, 144, 55]

自定义函数代替lambda实现相同功能

l1= [11,22,33,44,55]
def add(num):
    if num%2 == 0:
        return num
    else:
        return num + 100
rs = map(add, l1)
print(list(rs))

5、总结:filter()和map()函数区别

  1. Filter函数用于对序列的过滤操作,过滤出需要的结果,一次性返回他的过滤设置于的是条件
  2. Map函数是对序列根据设定条件进行操作后返回他设置的是操作方法,无论怎样都会返回结果

6、reduce函数

  1. reduce()函数即为化简函数,它的执行过程为:每一次迭代,都将上一次的迭代结果与下一个元素一同传入二元func函数中去执行。
  2. 在reduce()函数中,init是可选的,如果指定,则作为第一次迭代的第一个元素使用,如果没有指定,就取seq中的第一个元素。

使用reduce进行求和运算

from functools import reduce
def f(x, y):
 return x + y

print(reduce(f, [1, 3, 5, 7, 9]))  # 25
# 1、先计算头两个元素:f(1, 3),结果为4;
# 2、再把结果和第3个元素计算:f(4, 5),结果为9;
# 3、再把结果和第4个元素计算:f(9, 7),结果为16;
# 4、再把结果和第5个元素计算:f(16, 9),结果为25;
# 5、由于没有更多的元素了,计算结束,返回结果25。

print( reduce(lambda x, y: x + y, [1, 3, 5, 7, 9])  )  # 25

使用reduce将字符串反转

'''使用reduce将字符串反转'''
s = 'Hello World'
from functools import reduce

result = reduce(lambda x,y:y+x,s)
# 1、第一次:x=H,y=e  => y+x = eH
# 2、第二次:x=l,y=eH  => y+x = leH
# 3、第三次:x=l,y=leH  => y+x = lleH
print( result )      # dlroW olleH

7、sorted函数

1)sorted和sort区别
  1. sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作。
    2. sort 是对已经存在的列表进行操作,无返回值,而 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。
2)sorted使用

sorted 语法sorted(iterable, cmp=None, key=None, reverse=False)

iterable – 可迭代对象。
     cmp – 比较的函数
     key – 主要是用来进行比较的元素,只有一个参数,具体的函数的参数就是取自于可迭代对象中,指定可迭代对象中的一个元素来进行排序。
     reverse – 排序规则,reverse = True 降序 , reverse = False 升序(默认)。

sorted对列表排序

students = [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
print( sorted(students, key=lambda s: s[2], reverse=False) )    # 按年龄排序
# 结果:[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

sorted对字典排序

d = {'k1':1, 'k3': 3, 'k2':2}
# d.items() = [('k1', 1), ('k3', 3), ('k2', 2)]
a = sorted(d.items(), key=lambda x: x[1])
print(a)            # [('k1', 1), ('k2', 2), ('k3', 3)]
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!