排序算法 | 平均时间复杂度 |
---|---|
冒泡排序 | O(n^2) |
选择排序 | O(n^2) |
插入排序 | O(n^2) |
希尔排序 | O(n^1.5) |
快速排序 | O(N*logN) |
归并排序 | O(N*logN) |
堆排序 | O(N*logN) |
基数排序 | O(d(n+r)) |
①冒泡排序(BubbleSort)
基本思想:
两个数比较大小,较大的数下沉,较小的数冒起来。
过程:
比较相邻的两个数据,如果第二个数小,就交换位置。
从后向前两两比较,一直到比较最前两个数据。最终最小数被交换到起始的位置,这样第一个最小数的位置就排好了。
继续重复上述过程,依次将第2.3…n-1个最小数排好位置。
平均时间复杂度:
O(n^2)
java代码实现:
public static void BubbleSort(int [] arr){
int temp;//临时变量
for(int i=0; i<arr.length-1; i++){ //表示趟数,一共arr.length-1次。
for(int j=arr.length-1; j>i; j--){
if(arr[j] < arr[j-1]){
temp = arr[j];
arr[j] = arr[j-1];
arr[j-1] = temp;
}
}
}
}
优化:
针对问题:数据的顺序排好之后,冒泡算法仍然会继续进行下一轮的比较,直到arr.length-1次,后面的比较没有意义的。
方案:
设置标志位flag,如果发生了交换flag设置为true;如果没有交换就设置为false。
这样当一轮比较结束后如果flag仍为false,即:这一轮没有发生交换,说明数据的顺序已经排好,没有必要继续进行下去。
public static void BubbleSort1(int [] arr){
int temp;//临时变量
boolean flag;//是否交换的标志
for(int i=0; i<arr.length-1; i++){ //表示趟数,一共 arr.length-1 次
// 每次遍历标志位都要先置为false,才能判断后面的元素是否发生了交换
flag = false;
for(int j=arr.length-1; j>i; j--){ //选出该趟排序的最大值往后移动
if(arr[j] < arr[j-1]){
temp = arr[j];
arr[j] = arr[j-1];
arr[j-1] = temp;
flag = true; //只要有发生了交换,flag就置为true
}
}
// 判断标志位是否为false,如果为false,说明后面的元素已经有序,就直接return
if(!flag) break;
}
}
②选择排序(SelctionSort)
基本思想:
在长度为N的无序数组中,第一次遍历n-1个数,找到最小的数值与第一个元素交换;
第二次遍历n-2个数,找到最小的数值与第二个元素交换;
。。。
第n-1次遍历,找到最小的数值与第n-1个元素交换,排序完成。
过程:
平均时间复杂度:
O(n^2)
java代码实现:
public static void select_sort(int array[],int lenth){
for(int i=0;i<lenth-1;i++){
int minIndex = i;
for(int j=i+1;j<lenth;j++){
if(array[j]<array[minIndex]){
minIndex = j;
}
}
if(minIndex != i){
int temp = array[i];
array[i] = array[minIndex];
array[minIndex] = temp;
}
}
}
③插入排序(Insertion Sort)
基本思想:
在要排序的一组数中,假定前n-1个数已经排好序,现在将第n个数插到前面的有序数列中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
过程:
平均时间复杂度:
O(n^2)
java代码实现:
public static void insert_sort(int array[],int lenth){
int temp;
for(int i=0;i<lenth-1;i++){
for(int j=i+1;j>0;j--){
if(array[j] < array[j-1]){
temp = array[j-1];
array[j-1] = array[j];
array[j] = temp;
}else{ //不需要交换
break;
}
}
}
④希尔排序(Shell Sort)
注意:
如果数据序列基本有序,使用插入排序更加高效。
基本思想:
在要排序的一组数中,根据某一增量分为若干子序列,并对子序列分别进行插入排序。
然后逐渐将增量减小,并重复上述过程。直至增量为1,此时数据序列基本有序,最后进行插入排序。
过程:
平均时间复杂度:
O(n^1.5)
java代码实现:
public static void shell_sort(int array[],int lenth){
int temp = 0;
int incre = lenth;
while(true){
incre = incre/2;
for(int k = 0;k<incre;k++){ //根据增量分为若干子序列
for(int i=k+incre;i<lenth;i+=incre){
for(int j=i;j>k;j-=incre){
if(array[j]<array[j-incre]){
temp = array[j-incre];
array[j-incre] = array[j];
array[j] = temp;
}else{
break;
}
}
}
}
if(incre == 1){
break;
}
}
}
⑤快速排序(Quicksort)
基本思想:(分治)
先从数列中取出一个数作为key值;
将比这个数小的数全部放在它的左边,大于或等于它的数全部放在它的右边;
对左右两个小数列重复第二步,直至各区间只有1个数。
辅助理解:挖坑填数
初始时 i = 0; j = 9; key=72
由于已经将a[0]中的数保存到key中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从j开始向前找一个比key小的数。当j=8,符合条件,a[0] = a[8] ; i++ ; 将a[8]挖出再填到上一个坑a[0]中。
这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。
这次从i开始向后找一个大于key的数,当i=3,符合条件,a[8] = a[3] ; j-- ; 将a[3]挖出再填到上一个坑中。
数组 | 72 | - 6 | - 57 | - 88 | - 60 | - 42 | - 83 | - 73 | - 48 | - 85 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
此时 i = 3; j = 7; key=72
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将key填入a[5]。
数组 | 48 | - 6 | - 57 | - 88 | - 60 | - 42 | - 83 | - 73 | - 88 | - 85 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
数组 | 48 | - 6 | - 57 | -42 | - 60 | - 72 | - 83 | - 73 | - 88 | - 85 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
平均时间复杂度:
O(N*logN)
代码实现:
public static void quickSort(int a[],int l,int r){
if(l>=r)
return;
int i = l; int j = r; int key = a[l];//选择第一个数为key
while(i<j){
while(i<j && a[j]>=key)//从右向左找第一个小于key的值
j--;
if(i<j){
a[i] = a[j];
i++;
}
while(i<j && a[i]<key)//从左向右找第一个大于key的值
i++;
if(i<j){
a[j] = a[i];
j--;
}
}
//i == j
a[i] = key;
quickSort(a, l, i-1);//递归调用
quickSort(a, i+1, r);//递归调用
}
注意:
key值的选取可以有多种形式,例如中间数或者随机数,分别会对算法的复杂度产生不同的影响。
⑥归并排序(Merge Sort)
基本思想:
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。
首先考虑下如何将2个有序数列合并。这个非常简单,只要从比较2个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。
//将有序数组a[]和b[]合并到c[]中
void MemeryArray(int a[], int n, int b[], int m, int c[]){
int i, j, k;
i = j = k = 0;
while (i < n && j < m){
if (a[i] < b[j])
c[k++] = a[i++];
else
c[k++] = b[j++];
}
while (i < n)
c[k++] = a[i++];
while (j < m)
c[k++] = b[j++];
}
解决了上面的合并有序数列问题,再来看归并排序,其的基本思路就是将数组分成2组A,B,如果这2组组内的数据都是有序的,那么就可以很方便的将这2组数据进行排序。如何让这2组组内数据有序了?
可以将A,B组各自再分成2组。依次类推,当分出来的小组只有1个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的2个小组就可以了。这样通过先递归的分解数列,再合并数列就完成了归并排序。
过程:
平均时间复杂度:
O(NlogN)
归并排序的效率是比较高的,设数列长为N,将数列分开成小数列一共要logN步,每步都是一个合并有序数列的过程,时间复杂度可以记为O(N),故一共为O(NlogN)。
代码实现:
public static void merge_sort(int a[],int first,int last,int temp[]){
if(first < last){
int middle = (first + last)/2;
merge_sort(a,first,middle,temp);//左半部分排好序
merge_sort(a,middle+1,last,temp);//右半部分排好序
mergeArray(a,first,middle,last,temp); //合并左右部分
}
}
//合并 :将两个序列a[first-middle],a[middle+1-end]合并
public static void mergeArray(int a[],int first,int middle,int end,int temp[]){
int i = first;
int m = middle;
int j = middle+1;
int n = end;
int k = 0;
while(i<=m && j<=n){
if(a[i] <= a[j]){
temp[k] = a[i];
k++;
i++;
}else{
temp[k] = a[j];
k++;
j++;
}
}
while(i<=m){
temp[k] = a[i];
k++;
i++;
}
while(j<=n){
temp[k] = a[j];
k++;
j++;
}
for(int ii=0;ii<k;ii++){
a[first + ii] = temp[ii];
}
}
⑦堆排序(HeapSort)
基本思想:
平均时间复杂度:
O(N*logN)
由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作,再加上前面建立堆时N / 2次向下调整,每次调整时间复杂度也为O(logN)。二次操作时间相加还是O(N * logN)。
java代码实现:
//构建最小堆
public static void MakeMinHeap(int a[], int n){
for(int i=(n-1)/2 ; i>=0 ; i--){
MinHeapFixdown(a,i,n);
}
}
//从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2
public static void MinHeapFixdown(int a[],int i,int n){
int j = 2*i+1; //子节点
int temp = 0;
while(j<n){
//在左右子节点中寻找最小的
if(j+1<n && a[j+1]<a[j]){
j++;
}
if(a[i] <= a[j])
break;
//较大节点下移
temp = a[i];
a[i] = a[j];
a[j] = temp;
i = j;
j = 2*i+1;
}
}
public static void MinHeap_Sort(int a[],int n){
int temp = 0;
MakeMinHeap(a,n);
for(int i=n-1;i>0;i--){
temp = a[0];
a[0] = a[i];
a[i] = temp;
MinHeapFixdown(a,0,i);
}
}
⑧基数排序(RadixSort)
基本思想:
BinSort想法非常简单,首先创建数组A[MaxValue];然后将每个数放到相应的位置上(例如17放在下标17的数组位置);最后遍历数组,即为排序后的结果。
问题:
当序列中存在较大值时,BinSort 的排序方法会浪费大量的空间开销。
解决:
基本思想:
基数排序是在BinSort的基础上,通过基数的限制来减少空间的开销。
(1)
(2)
(1)首先确定基数为10,数组的长度也就是10.每个数34都会在这10个数中寻找自己的位置。
(2)不同于BinSort会直接将数34放在数组的下标34处,基数排序是将34分开为3和4,第一轮排序根据最末位放在数组的下标4处,第二轮排序根据倒数第二位放在数组的下标3处,然后遍历数组即可。
java代码实现:
public static void RadixSort(int A[],int temp[],int n,int k,int r,int cnt[]){
//A:原数组
//temp:临时数组
//n:序列的数字个数
//k:最大的位数2
//r:基数10
//cnt:存储bin[i]的个数
for(int i=0 , rtok=1; i<k ; i++ ,rtok = rtok*r){
//初始化
for(int j=0;j<r;j++){
cnt[j] = 0;
}
//计算每个箱子的数字个数
for(int j=0;j<n;j++){
cnt[(A[j]/rtok)%r]++;
}
//cnt[j]的个数修改为前j个箱子一共有几个数字
for(int j=1;j<r;j++){
cnt[j] = cnt[j-1] + cnt[j];
}
for(int j = n-1;j>=0;j--){ //重点理解
cnt[(A[j]/rtok)%r]--;
temp[cnt[(A[j]/rtok)%r]] = A[j];
}
for(int j=0;j<n;j++){
A[j] = temp[j];
}
}
}
来源:CSDN
作者:Wei0315
链接:https://blog.csdn.net/Wei0315/article/details/104774722