Pattern recognition in time series [closed]

孤街醉人 提交于 2019-11-27 16:39:06
user1149913

Here is a sample result from a small project I did to partition ecg data.

My approach was a "switching autoregressive HMM" (google this if you haven't heard of it) where each datapoint is predicted from the previous datapoint using a Bayesian regression model. I created 81 hidden states: a junk state to capture data between each beat, and 80 separate hidden states corresponding to different positions within the heartbeat pattern. The pattern 80 states were constructed directly from a subsampled single beat pattern and had two transitions - a self transition and a transition to the next state in the pattern. The final state in the pattern transitioned to either itself or the junk state.

I trained the model with Viterbi training, updating only the regression parameters.

Results were adequate in most cases. A similarly structure Conditional Random Field would probably perform better, but training a CRF would require manually labeling patterns in the dataset if you don't already have labelled data.

Edit:

Here's some example python code - it is not perfect, but it gives the general approach. It implements EM rather than Viterbi training, which may be slightly more stable. The ecg dataset is from http://www.cs.ucr.edu/~eamonn/discords/ECG_data.zip

import numpy as np
import numpy.random as rnd
import matplotlib.pyplot as plt 
import scipy.linalg as lin
import re

data=np.array(map(lambda l: map(float,filter(lambda x: len(x)>0,re.split('\\s+',l))),open('chfdb_chf01_275.txt'))).T
dK=230
pattern=data[1,:dK]
data=data[1,dK:]

def create_mats(dat):
    '''
    create 
        A - an initial transition matrix 
        pA - pseudocounts for A
        w - emission distribution regression weights
        K - number of hidden states
    '''
    step=5 #adjust this to change the granularity of the pattern
    eps=.1
    dat=dat[::step]
    K=len(dat)+1
    A=np.zeros( (K,K) )
    A[0,1]=1.
    pA=np.zeros( (K,K) )
    pA[0,1]=1.
    for i in xrange(1,K-1):
        A[i,i]=(step-1.+eps)/(step+2*eps)
        A[i,i+1]=(1.+eps)/(step+2*eps)
        pA[i,i]=1.
        pA[i,i+1]=1.
    A[-1,-1]=(step-1.+eps)/(step+2*eps)
    A[-1,1]=(1.+eps)/(step+2*eps)
    pA[-1,-1]=1.
    pA[-1,1]=1.

    w=np.ones( (K,2) , dtype=np.float)
    w[0,1]=dat[0]
    w[1:-1,1]=(dat[:-1]-dat[1:])/step
    w[-1,1]=(dat[0]-dat[-1])/step

    return A,pA,w,K

#initialize stuff
A,pA,w,K=create_mats(pattern)

eta=10. #precision parameter for the autoregressive portion of the model 
lam=.1 #precision parameter for the weights prior 

N=1 #number of sequences
M=2 #number of dimensions - the second variable is for the bias term
T=len(data) #length of sequences

x=np.ones( (T+1,M) ) # sequence data (just one sequence)
x[0,1]=1
x[1:,0]=data

#emissions
e=np.zeros( (T,K) )
#residuals
v=np.zeros( (T,K) )

#store the forward and backward recurrences
f=np.zeros( (T+1,K) )
fls=np.zeros( (T+1) )
f[0,0]=1
b=np.zeros( (T+1,K) )
bls=np.zeros( (T+1) )
b[-1,1:]=1./(K-1)

#hidden states
z=np.zeros( (T+1),dtype=np.int )

#expected hidden states
ex_k=np.zeros( (T,K) )

# expected pairs of hidden states
ex_kk=np.zeros( (K,K) )
nkk=np.zeros( (K,K) )

def fwd(xn):
    global f,e
    for t in xrange(T):
        f[t+1,:]=np.dot(f[t,:],A)*e[t,:]
        sm=np.sum(f[t+1,:])
        fls[t+1]=fls[t]+np.log(sm)
        f[t+1,:]/=sm
        assert f[t+1,0]==0

def bck(xn):
    global b,e
    for t in xrange(T-1,-1,-1):
        b[t,:]=np.dot(A,b[t+1,:]*e[t,:])
        sm=np.sum(b[t,:])
        bls[t]=bls[t+1]+np.log(sm)
        b[t,:]/=sm

def em_step(xn):
    global A,w,eta
    global f,b,e,v
    global ex_k,ex_kk,nkk

    x=xn[:-1] #current data vectors
    y=xn[1:,:1] #next data vectors predicted from current
    #compute residuals
    v=np.dot(x,w.T) # (N,K) <- (N,1) (N,K)
    v-=y
    e=np.exp(-eta/2*v**2,e)

    fwd(xn)
    bck(xn)

    # compute expected hidden states
    for t in xrange(len(e)):
        ex_k[t,:]=f[t+1,:]*b[t+1,:]
        ex_k[t,:]/=np.sum(ex_k[t,:])

    # compute expected pairs of hidden states    
    for t in xrange(len(f)-1):
        ex_kk=A*f[t,:][:,np.newaxis]*e[t,:]*b[t+1,:]
        ex_kk/=np.sum(ex_kk)
        nkk+=ex_kk

    # max w/ respect to transition probabilities
    A=pA+nkk
    A/=np.sum(A,1)[:,np.newaxis]

    # solve the weighted regression problem for emissions weights
    #  x and y are from above 
    for k in xrange(K):
        ex=ex_k[:,k][:,np.newaxis]
        dx=np.dot(x.T,ex*x)
        dy=np.dot(x.T,ex*y)
        dy.shape=(2)
        w[k,:]=lin.solve(dx+lam*np.eye(x.shape[1]), dy)

    #return the probability of the sequence (computed by the forward algorithm)
    return fls[-1]

if __name__=='__main__':
    #run the em algorithm
    for i in xrange(20):
        print em_step(x)

    #get rough boundaries by taking the maximum expected hidden state for each position
    r=np.arange(len(ex_k))[np.argmax(ex_k,1)<3]

    #plot
    plt.plot(range(T),x[1:,0])

    yr=[np.min(x[:,0]),np.max(x[:,0])]
    for i in r:
        plt.plot([i,i],yr,'-r')

    plt.show()
Davide C

Why not using a simple matched filter? Or its general statistical counterpart called cross correlation. Given a known pattern x(t) and a noisy compound time series containing your pattern shifted in a,b,...,z like y(t) = x(t-a) + x(t-b) +...+ x(t-z) + n(t). The cross correlation function between x and y should give peaks in a,b, ...,z

tucuxi

Weka is a powerful collection of machine-learning software, and supports some time-series analysis tools, but I do not know enough about the field to recommend a best method. However, it is Java-based; and you can call Java code from C/C++ without great fuss.

Packages for time-series manipulation are mostly directed at the stock-market. I suggested Cronos in the comments; I have no idea how to do pattern recognition with it, beyond the obvious: any good model of a length of your series should be able to predict that, after small bumps at a certain distance to the last small bump, big bumps follow. That is, your series exhibits self-similarity, and the models used in Cronos are designed to model it.

If you don't mind C#, you should request a version of TimeSearcher2 from the folks at HCIL - pattern recognition is, for this system, drawing what a pattern looks like, and then checking whether your model is general enough to capture most instances with a low false-positive rate. Probably the most user-friendly approach you will find; all others require quite a background in statistics or pattern recognition strategies.

I'm not sure what package would work best for this. I did something similar at one point in college where I tried to automatically detect certain similar shapes on an x-y axis for a bunch of different graphs. You could do something like the following.

Class labels like:

  • no class
  • start of region
  • middle of region
  • end of region

Features like:

  1. relative y-axis relative and absolute difference of each of the surrounding points in a window 11 points wide
  2. Features like difference from average
  3. Relative difference between point before, point after
Neil Han

I am using deep learning if it's an option for you. It's done in Java, Deeplearning4j. I am experimenting with LSTM. I tried 1 hidden layer and 2 hidden layers to process time series.

return new NeuralNetConfiguration.Builder()
                .seed(HyperParameter.seed)
                .iterations(HyperParameter.nItr)
                .miniBatch(false)
                .learningRate(HyperParameter.learningRate)
                .biasInit(0)
                .weightInit(WeightInit.XAVIER)
                .momentum(HyperParameter.momentum)
                .optimizationAlgo(
                        OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT  // RMSE: ????
                )
                .regularization(true)
                .updater(Updater.RMSPROP) // NESTEROVS
                // .l2(0.001)
                .list()
                .layer(0,
                        new GravesLSTM.Builder().nIn(HyperParameter.numInputs).nOut(HyperParameter.nHNodes_1).activation("tanh").build())
                .layer(1,
                        new GravesLSTM.Builder().nIn(HyperParameter.nHNodes_1).nOut(HyperParameter.nHNodes_2).dropOut(HyperParameter.dropOut).activation("tanh").build())
                .layer(2,
                        new GravesLSTM.Builder().nIn(HyperParameter.nHNodes_2).nOut(HyperParameter.nHNodes_2).dropOut(HyperParameter.dropOut).activation("tanh").build())
                .layer(3, // "identity" make regression output
                        new RnnOutputLayer.Builder(LossFunctions.LossFunction.MSE).nIn(HyperParameter.nHNodes_2).nOut(HyperParameter.numOutputs).activation("identity").build()) // "identity"
                .backpropType(BackpropType.TruncatedBPTT)
                .tBPTTBackwardLength(100)
                .pretrain(false)
                .backprop(true)
                .build();

Found a few things:

  • LSTM or RNN is very good at picking out patterns in time-series.
  • Tried on one time-series, and a group different time-series. Pattern were picked out easily.
  • It is also trying to pick out patterns not for just one cadence. If there are patterns by week, and by month, both will be learned by the net.
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!