我的视频学习笔记
视频地址:https://www.bilibili.com/video/av15997678?p=29
源地址:https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/406_GAN.py
讲解:https://morvanzhou.github.io/tutorials/machine-learning/torch/4-06-GAN/
import torch
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001
LR_D = 0.0001
N_IDEAS = 5
ART_COMPONENTS = 15
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)]) # -1,1的坐标上有15个点
def artist_works():
a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis] # 加一个维度
paintings = a * np.power(PAINT_POINTS, 2) + (a - 1)
paintings = torch.from_numpy(paintings).float()
return paintings
# 用随机灵感创造出一幅画
G = nn.Sequential(
nn.Linear(N_IDEAS, 128),
nn.ReLU(),
nn.Linear(128, ART_COMPONENTS)
)
D = nn.Sequential(
nn.Linear(ART_COMPONENTS, 128),
nn.ReLU(),
nn.Linear(128, 1),
nn.Sigmoid(),
)
opt_D = torch.optim.Adam(D.parameters(), lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(), lr=LR_G)
plt.ion() # something about continuous plotting
for step in range(10000):
artist_paintings = artist_works()
G_ideas = torch.randn(BATCH_SIZE, N_IDEAS) # 随机生成BATCH_SIZE组,每组N_IDEAS个
G_paintings = G(G_ideas)
prob_artist0 = D(artist_paintings)
prob_artist1 = D(G_paintings)
D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1 - prob_artist1)) # 增加著名画家的概率
# 减少认为是著名画家的新手画家画的概率
G_loss = torch.mean(torch.log(1 - prob_artist1))
opt_D.zero_grad()
D_loss.backward(retain_graph=True) # 保留参数给后面
opt_D.step()
opt_G.zero_grad()
G_loss.backward()
opt_G.step()
if step % 50 == 0: # plotting
plt.cla()
plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting', )
plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(),
fontdict={'size': 13})
plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 13})
plt.ylim((0, 3))
plt.legend(loc='upper right', fontsize=10)
plt.draw()
plt.pause(0.01)
plt.ioff()
plt.show()
来源:CSDN
作者:为伊消得77
链接:https://blog.csdn.net/u011522686/article/details/104753619