从图中可以看出 Eureka Server 集群相互之间通过 Replicate 来同步数据,相互之间不区分主节点和从节点,所有的节点都是平等的。在这种架构中,节点通过彼此互相注册来提高可用性,每个节点需要添加一个或多个有效的 serviceUrl 指向其他节点。
如果某台 Eureka Server 宕机,Eureka Client 的请求会自动切换到新的 Eureka Server 节点。当宕机的服务器重新恢复后,Eureka 会再次将其纳入到服务器集群管理之中。当节点开始接受客户端请求时,所有的操作都会进行节点间复制,将请求复制到其它 Eureka Server 当前所知的所有节点中。
另外 Eureka Server 的同步遵循着一个非常简单的原则:只要有一条边将节点连接,就可以进行信息传播与同步。所以,如果存在多个节点,只需要将节点之间两两连接起来形成通路,那么其它注册中心都可以共享信息。每个 Eureka Server 同时也是 Eureka Client,多个 Eureka Server 之间通过 P2P 的方式完成服务注册表的同步。
Eureka Server 集群之间的状态是采用异步方式同步的,所以不保证节点间的状态一定是一致的,不过基本能保证最终状态是一致的。
Eureka 分区
Eureka 提供了 Region 和 Zone 两个概念来进行分区,这两个概念均来自于亚马逊的 AWS:
region:可以理解为地理上的不同区域,比如亚洲地区,中国区或者深圳等等。没有具体大小的限制。根据项目具体的情况,可以自行合理划分 region。
zone:可以简单理解为 region 内的具体机房,比如说 region 划分为深圳,然后深圳有两个机房,就可以在此 region 之下划分出 zone1、zone2 两个 zone。
上图中的 us-east-1c、us-east-1d、us-east-1e 就代表了不同的 Zone。Zone 内的 Eureka Client 优先和 Zone 内的 Eureka Server 进行心跳同步,同样调用端优先在 Zone 内的 Eureka Server 获取服务列表,当 Zone 内的 Eureka Server 挂掉之后,才会从别的 Zone 中获取信息。
Eurka 保证 AP
Eureka Server 各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点依然可以提供注册和查询服务。而 Eureka Client 在向某个 Eureka 注册时,如果发现连接失败,则会自动切换至其它节点。只要有一台 Eureka Server 还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。
CAP理论作为分布式系统的基础理论,它描述的是一个分布式系统在以下三个特性中:
最多满足其中的两个特性。也就是下图所描述的。分布式系统要么满足CA,要么CP,要么AP。无法同时满足CAP。
分区容错性:指的分布式系统中的某个节点或者网络分区出现了故障的时候,整个系统仍然能对外提供满足一致性和可用性的服务。也就是说部分故障不影响整体使用。
事实上我们在设计分布式系统是都会考虑到bug,硬件,网络等各种原因造成的故障,所以即使部分节点或者网络出现故障,我们要求整个系统还是要继续使用的
(不继续使用,相当于只有一个分区,那么也就没有后续的一致性和可用性了)
可用性: 一直可以正常的做读写操作。简单而言就是客户端一直可以正常访问并得到系统的正常响应。用户角度来看就是不会出现系统操作失败或者访问超时等问题。
一致性:在分布式系统完成某写操作后任何读操作,都应该获取到该写操作写入的那个最新的值。相当于要求分布式系统中的各节点时时刻刻保持数据的一致性。
CP: 优先保证一致性和分区容错性,放弃可用性。在数据一致性要求比较高的场合(譬如:zookeeper) 是比较常见的做法,一旦发生网络故障或者消息丢失,就会牺牲用户体验,等恢复之后用户才逐渐能访问。
AP: 优先保证可用性和分区容错性,放弃一致性
为啥CAP 只能三选二
Consistency 和 Availability 的矛盾
一致性和可用性,为什么不可能同时成立?答案很简单,因为可能通信失败(即出现分区容错)。
如果保证 G2 的一致性,那么 G1 必须在写操作时,锁定 G2 的读操作和写操作。只有数据同步后,才能重新开放读写。锁定期间,G2 不能读写,没有可用性不。
如果保证 G2 的可用性,那么势必不能锁定 G2,所以一致性不成立。
综上所述,G2 无法同时做到一致性和可用性。系统设计时只能选择一个目标。如果追求一致性,那么无法保证所有节点的可用性;如果追求所有节点的可用性,那就没法做到一致性。
Eurka 工作流程
1、Eureka Server 启动成功,等待服务端注册。在启动过程中如果配置了集群,集群之间定时通过 Replicate 同步注册表,每个 Eureka Server 都存在独立完整的服务注册表信息
2、Eureka Client 启动时根据配置的 Eureka Server 地址去注册中心注册服务
3、Eureka Client 会每 30s 向 Eureka Server 发送一次心跳请求,证明客户端服务正常
4、当 Eureka Server 90s 内没有收到 Eureka Client 的心跳,注册中心则认为该节点失效,会注销该实例
5、单位时间内 Eureka Server 统计到有大量的 Eureka Client 没有上送心跳,则认为可能为网络异常,进入自我保护机制,不再剔除没有发送心跳的客户端
6、当 Eureka Client 心跳请求恢复正常之后,Eureka Server 自动退出自我保护模式
7、Eureka Client 定时全量或者增量从注册中心获取服务注册表,并且将获取到的信息缓存到本地
8、服务调用时,Eureka Client 会先从本地缓存找寻调取的服务。如果获取不到,先从注册中心刷新注册表,再同步到本地缓存
9、Eureka Client 获取到目标服务器信息,发起服务调用
10、Eureka Client 程序关闭时向 Eureka Server 发送取消请求,Eureka Server 将实例从注册表中删除
这就是Eurka基本工作流程
Zuul 大部分功能都是通过过滤器来实现的,这些过滤器类型对应于请求的典型生命周期。
PRE: 这种过滤器在请求被路由之前调用。可利用这种过滤器实现身份验证、在集群中选择请求的微服务、记录调试信息等。
ROUTING:这种过滤器将请求路由到微服务。这种过滤器用于构建发送给微服务的请求,并使用 Apache HttpClient 或 Netfilx Ribbon 请求微服务。
POST:这种过滤器在路由到微服务以后执行。这种过滤器可用来为响应添加标准的 HTTP Header、收集统计信息和指标、将响应从微服务发送给客户端等。
ERROR:在其他阶段发生错误时执行该过滤器。 除了默认的过滤器类型,Zuul 还允许我们创建自定义的过滤器类型。例如,我们可以定制一种 STATIC 类型的过滤器,直接在 Zuul 中生成响应,而不将请求转发到后端的微服务。
1、提交配置触发post请求给server端的bus/refresh接口
2、server端接收到请求并发送给Spring Cloud Bus总线
3、Spring Cloud bus接到消息并通知给其它连接到总线的客户端
4、其它客户端接收到通知,请求Server端获取最新配置
5、全部客户端均获取到最新的配置
来源:oschina
链接:https://my.oschina.net/architectliuyuanyuan/blog/3190734