【洛谷P6186】[NOI Online 提高组] 冒泡排序

强颜欢笑 提交于 2020-03-09 18:37:23

题目

题目链接:https://www.luogu.com.cn/problem/P6186
给定一个 \(1 ∼ n\) 的排列 \(p_i\),接下来有 \(m\) 次操作,操作共两种:

  1. 交换操作:给定 \(x\),将当前排列中的第 \(x\) 个数与第 \(x+1\) 个数交换位置。
  2. 询问操作:给定 \(k\),请你求出当前排列经过 \(k\) 轮冒泡排序后的逆序对个数。
    对一个长度为 \(n\) 的排列 \(p_i\) 进行一轮冒泡排序的伪代码如下:
for i = 1 to n-1:
  if p[i] > p[i + 1]:
    swap(p[i], p[i + 1])

思路

观察冒泡排序的伪代码,容易发现每一轮冒泡排序,会把最大的数移动到最后面,设 \(cnt[i]\) 表示第 \(i\) 个数前严格大于他的数字个数,手画一下可以发现,一轮冒泡排序会把每一个 \(cnt[i]>1\)\(cnt[i]-1\),对于 \(cnt[i]=0\) 的不变。
那么对于一个查询 \(k\) 轮冒泡排序之后的逆序对个数的操作,设冒泡前的逆序对数量为 \(sum\),那么 \(k\) 轮排序后:

  1. \(cnt[i]\leq k\),那么 \(cnt[i]\) 会清零,这一部分减少了 \(\sum_{cnt[i]\leq k} cnt[i]\) 个逆序对。
  2. \(cnt[i]>k\),那么 \(cnt[i]\) 会减少 \(k\),这一部分减少了 \(k\times \sum^{n}_{i=1}[cnt[i]>k]\) 个逆序对。

树状数组分别维护两者的前缀和即可。
对于修改操作,设修改位置 \(i\),显然受影响的就只有 \(cnt[i]\)\(cnt[i+1]\)。分类讨论 \(a[i]\)\(a[i+1]\) 的大小即可。
时间复杂度 \(O(n\log n)\)

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;

const int N=200010;
int n,m,opt,k,cnt0,a[N],cnt[N];
ll sum;

struct Bit
{
    ll c[N];
    Bit() { memset(c,0,sizeof(c)); }
    
    void add(int x,ll k)
    {
        if (!x) return;
        for (int i=x;i<=n;i+=i&-i)
            c[i]+=k;
    }
    
    ll ask(int x)
    {
        ll ans=0;
        for (int i=x;i;i-=i&-i)
            ans+=c[i];
        return ans;
    }
}bitc,bits,bit;

int main()
{
    freopen("data.txt","r",stdin);
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        cnt[i]=bit.ask(n)-bit.ask(a[i]);
        bit.add(a[i],1);
        bitc.add(cnt[i],1); bits.add(cnt[i],cnt[i]);
        sum+=cnt[i];
        if (!cnt[i]) cnt0++;
    }
    while (m--)
    {
        scanf("%d%d",&opt,&k);
        if (opt==1)
        {
            bitc.add(cnt[k],-1); bits.add(cnt[k],-cnt[k]);
            bitc.add(cnt[k+1],-1); bits.add(cnt[k+1],-cnt[k+1]);
            if (a[k]>a[k+1])
            {
                cnt[k+1]--; sum--;
                if (!cnt[k+1]) cnt0++;
            }
            if (a[k]<a[k+1])
            {
                if (!cnt[k]) cnt0--;
                cnt[k]++; sum++;
            }
            swap(cnt[k],cnt[k+1]); swap(a[k],a[k+1]);
            bitc.add(cnt[k],1); bits.add(cnt[k],cnt[k]);
            bitc.add(cnt[k+1],1); bits.add(cnt[k+1],cnt[k+1]);
        }
        else
        {
            if (k>n) k=n;
            ll ans1=bits.ask(k);
            ll ans2=1LL*(n-bitc.ask(k)-cnt0)*k;
            printf("%lld\n",sum-ans1-ans2);
        }
    }
    return 0;
}
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!