梯度下降法--python实现

邮差的信 提交于 2020-03-09 14:48:12

梯度下降是迭代法的一种,可以用于求解最小二乘问题,不是一个机器学习算法,而是一种基于搜索的最优化方法。在求解无约束优化问题时,梯度下降法是最常用的一种方法之一,最小二乘法也是一种。

在这里插入图片描述

在直线方程中,导数代表斜率。在曲线方程中,导数代表切线斜率。切线斜率∇wJ的正负,也代表函数增大的方向。设-η∇wJ,η称为学习率,影响获得最优解的速度,当取值不适当时,得不到相应的值。它是一个超参数。
η太小时,降低收敛的速度,η太大时,可能导致不收敛。

def J(theta):
    return (theta-2.5)**2 -1

def dJ(theta):
    return 2*(theta-2.5)

theta_history = []

def grandient_descent(inital_theta,eta,esplison):
    
    theta = inital_theta
    theta_history.append(inital_theta)
   
    while True:
        last_theta = theta
        theta = theta - eta*dJ(theta)
        theta_history.append(theta)
        if abs(J(theta)-J(last_theta)) < 0.0008:
            break
            
def plot_theta_history():
    plt.plot(plot_x,J(plot_x))
    plt.plot(np.array(theta_history),J(np.array(theta_history)),color="r",marker="+")
    plt.show()
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!