直线扫描转换-DDA算法

醉酒当歌 提交于 2020-03-08 06:54:02

直线扫描转换-DDA算法

直线段的扫描转换算法

已知两个点,求直线。

为了在光栅显示器上用这些离散的像素点逼近这条直线,需要知道这些像素点的x,y坐标。

求出过P0,P1的直线段方程:
y=kx+b
k=(y1-y0)/(x1-x0)

假设x已知,即从x的起点x0开始,沿x方向前进一个像素(步长= 1),可以计算出相应的y值。

因为像素的坐标是整数,所以y值还要进行取整处理。

如何把数学上的一个点扫描转换一个屏幕像素点?

p(1.7,0.8) ->(1,0)

p(1.7,0.8) +0.5->(2.2,1.3)

p(2.2,1.3) ->(2,1)

直线是最基本的图形,一个动画或真实感图形往往需要调用成千上万次画线程序,因此直线算法的好坏与效率将直接影响图形的质量和显示速度。

为了提高效率,把计算量减下来,关键问题就是如何把乘法取消.

1、数值微分法(DDA)
2、中点画线法
3、Bresenham算法

数值微分DDA(Digital Differential Analyzer)法

引进图形学中一个很重要的思想---增量思想

yi=kxi+b
yi+1=kxi+1+b
=k(xi+1)+b
=kxi+k+b
=kxi+b+k
=yi+k

yi+1=yi+k

这个式子的含义是:当前步的y值等于前一步的y值加上斜率k

这样就把原来一个乘法和加法变成了一个加法

用DDA扫描转换连接两点P0(0,0)和P1(5,3)的直线段。

k=(3-0)/(5-0)=0.6<1

yi+1=yi+k

x y int(y+0.5)
0 0 0
1 0+0.6 1
2 0.6+0.6 1
3 1.2+0.6 2
4 1.8+0.6 2
5 2.4+0.6 3

问题:DDA画直线算法:x每递增1,y递增斜率k。是否适合任意斜率的直线?

答案:不适合

当|k|>1时,如果还适用这种方法会导致点太少。

如直线点从(0,0)到(2,100),也只用3个点来表示,这样明显不合适。

因此当|k|>1时,交换x和y的位置。也就是以单位y间隔(δy=1)取样,顺序计算每个x值。

xi+1=xi+1/k

如从点0.0到点2,5

1/k=2/5=0.4

y x int(x+0.5)
0 0 0
1 0+0.4 0
2 0.4+0.4 1
3 0.8+0.4 1
4 1.2+0.4 2
5 1.6+0.4 2
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!