一、查看显卡信息:
终端输入命令:lspci |grep -i vga
二、安装显卡驱动
1.
禁用nouveau驱动
参考博客:https://blog.csdn.net/qq_33200967/article/details/80689543
终端输入:
sudo gedit /etc/modprobe.d/blacklist.conf
在文本最后添加:
blacklist nouveau
options nouveau modeset=0
然后执行:
sudo update-initramfs -u
重启后,执行以下命令,如果没有屏幕输出,说明禁用nouveau成功:
lsmod | grep nouveau
2. 下载安装驱动
方法一:
参考博客https://blog.csdn.net/weixin_40294256/article/details/79157838
源头为:AINLP公众号的“从零开始搭建深度学习服务器: 基础环境配置(Ubuntu + GTX 1080 TI + CUDA + cuDNN)”
参考博客:https://blog.csdn.net/sinat_25640747/article/details/79231482
安装1080TI显卡驱动, 终端输入:
sudo apt-get purge nvidia*
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-384 nvidia-settings
安装完毕后重启电脑,终端输入:nvidia-smi , 查看显卡驱动,结果类似于下图
(来自公众号AINLP)
方法二:
参考博客:https://blog.csdn.net/qq_33200967/article/details/80689543
(1)驱动下载网址为:
https://www.geforce.cn/drivers
下载完成之后会得到一个安装包,不同版本文件名不同:
NVIDIA-Linux-x86_64-418.43.run
(2)卸载旧驱动
以下操作都需要在命令界面操作,执行快捷键 “Ctrl-Alt+F1” 进入命令界面,并登录(输入用户名即安装ubuntu时自己给电脑取的名和密码)
执行以下命令禁用X-Window服务,否则无法安装显卡驱动:
sudo service lightdm stop
出现菱形块时输入密码
执行以下三条命令卸载原有显卡驱动:
sudo apt-get remove --purge nvidia*
(如果之前的显卡驱动是run文件安装,则再输入以下两句)
sudo chmod +x NVIDIA-Linux-x86_64-410.93.run
sudo ./NVIDIA-Linux-x86_64-410.93.run --uninstall
(3)安装新驱动
直接执行驱动文件即可安装新驱动,一直默认即可:
sudo su
sh NVIDIA-Linux-x86_64-418.43.run
提示是否继续安装/退出安装时,选择继续安装
提示“Would you like to run the nvidia-xconfid utility to automatically update your X configuration file...”时,选择NO
执行以下命令启动X-Window服务
sudo service lightdm start
若没有返回桌面,则按Ctrl+Alt+F7返回
最后执行重启命令,重启系统即可:
reboot
注意: 若安装错误版本的显卡驱动,系统重启之后可能出现重复登录的情况。
三、安装CUDA
下载网址:https://developer.nvidia.com/cuda-toolkit
deb文件安装如下:
选择类似下图(来自公众号AINLP)
事先网盘里有cuda-repo-ubuntu1604-9-1-local_9.1.85-1_amd64.deb
则在终端输入命令:
sudo dpkg -i cuda-repo-ubuntu1604-9-1-local_9.1.85-1_amd64.deb
sudo apt-key add /var/cuda-repo-9-1-local/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda
卸载:版本号视情况而定
sudo apt-get autoremove --purge cuda
sudo rm -rf /usr/local/cuda-9.1/
run文件安装如下:
sudo sh cuda_9.1.85_387.26_linux.run
按”空格“键加载更多,选择”accept“,有一步是安装显卡驱动的,选择n,剩下都选择y,或者按回车
参考博客:https://blog.csdn.net/qq_33200967/article/details/80689543#CUDA_71
开始安装之后,需要阅读说明,可以使用Ctrl + C直接阅读完成,或者使用空格键慢慢阅读。然后进行配置:
(是否同意条款,必须同意才能继续安装)
accept/decline/quit: accept
(这里不要安装驱动,因为已经安装最新的驱动了,否则可能会安装旧版本的显卡驱动,导致重复登录的情况)
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?
(y)es/(n)o/(q)uit: n
Install the CUDA 10.0 Toolkit?(是否安装CUDA 10 ,这里必须要安装)
(y)es/(n)o/(q)uit: y
Enter Toolkit Location(安装路径,使用默认,直接回车就行)
[ default is /usr/local/cuda-10.0 ]:
Do you want to install a symbolic link at /usr/local/cuda?(同意创建软链接)
(y)es/(n)o/(q)uit: y
Install the CUDA 10.0 Samples?(不用安装测试,本身就有了)
(y)es/(n)o/(q)uit: n
Installing the CUDA Toolkit in /usr/local/cuda-10.0 ...(开始安装)
卸载:
sudo /usr/local/cuda-9.1/bin/uninstall_cuda_9.1.pl
sudo rm -rf /usr/local/cuda-9.1/
添加环境变量:
sudo gedit ~/.bashrc
在文件最后加入以下两行并保存关闭
export PATH=/usr/local/cuda-9.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-9.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
运行 source ~/.bashrc 使其生效
通过命令 “nvcc -V” 查看安装的版本信息
测试:
cd /usr/local/cuda-9.1/samples/1_Utilities/deviceQuery
sudo make
sudo ./deviceQuery
结果输出如下证明安装成功:
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX 1080 Ti"
CUDA Driver Version / Runtime Version 10.1 / 9.1
CUDA Capability Major/Minor version number: 6.1
Total amount of global memory: 11177 MBytes (11720130560 bytes)
(28) Multiprocessors, (128) CUDA Cores/MP: 3584 CUDA Cores
GPU Max Clock rate: 1683 MHz (1.68 GHz)
Memory Clock rate: 5505 Mhz
Memory Bus Width: 352-bit
L2 Cache Size: 2883584 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 3 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 9.1, NumDevs = 1
Result = PASS
四、下载安装Cudnn
下载地址:https://developer.nvidia.com/rdp/cudnn-download
需要先登录再下载,下载得到压缩包如:cudnn-9.1-linux-x64-v7.1.tgz
先解压:
tar -zxvf cudnn-9.1-linux-x64-v7.1.tgz
解压后得到:
cuda/include/cudnn.h
cuda/NVIDIA_SLA_cuDNN_Support.txt
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.7
cuda/lib64/libcudnn.so.7.1.2
cuda/lib64/libcudnn_static.a
再执行:
sudo cp cuda/include/cudnn.h /usr/local/cuda-9.1/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-9.1/lib64/ -d
注意最后一行拷贝时 "-d"不能少, 否则会提示.so不是symbol link(参考博客:https://blog.csdn.net/weixin_40294256/article/details/79157838)
拷贝完成之后,可以使用以下命令查看CUDNN的版本信息:
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
来源:https://blog.csdn.net/seluyda/article/details/99685701