互斥锁

旧街凉风 提交于 2020-03-02 21:04:58

守护进程

什么是守护进程

进程是一个正在运行的程序

守护进程也是一个普通进程

意思是一个进程可以守护另一个进程

例如

康熙要是一个进程的话,后宫佳丽都是守护者

如果康熙挂了, 后宫佳丽们要陪葬

结论:

如果b是a的守护进程,a是被守护的进程,a要是挂了,b也就随之结束了

# 案例1from multiprocessing import Process
import time
​
# 妃子的一生
def task():
    print("入宫了.....")
    time.sleep(50)
    print("妃子病逝了......")
​
​
if __name__ == '__main__':
    # 康熙登基了
    print("登基了.....")
​
    # 找了一个妃子
    p = Process(target=task)
​
    # 设置为守护进程 必须在开启前就设置好
    p.daemon = True
    p.start()
​
    # 康熙驾崩了
    time.sleep(3)
    print("故事结束了!")

使用场景:

父进程交给了子进程一个任务,任务还没有完成父进程就结束了,子进程就没有继续执行的意义了

例如:qq 接收到一个视频文件,于是开启了一个子进程来下载,如果中途退出了qq,下载任务就没必须要继续运行了

互斥锁 

什么是互斥锁

互斥锁 互相排斥的锁,我在这站着你就别过来,(如果这个资源已经被锁了,其他进程就无法使用了)

需要强调的是: 锁 并不是真的把资源锁起来了,只是在代码层面限制你的代码不能执行

为什么需要互斥锁:

并发将带来资源的竞争问题 当多个进程同时要操作同一个资源时,将会导致数据错乱的问题 如下列所示:

解决方案1:

加join, ​ 弊端 1.把原本并发的任务变成了穿行,避免了数据错乱问题,但是效率降低了,这样就没必要开子进程了 ​ 2.原本多个进程之间是公平竞争,join执行的顺序就定死了,这是不合理的

解决方案2:

就是给公共资源加锁,互斥锁 ​ 互斥锁 互相排斥的锁,我在这站着你就别过来,(如果这个资源已经被锁了,其他进程就无法使用了)

锁 并不是真的把资源锁起来了,只是在代码层面限制你的代码不能执行

锁和join的区别:

1.join是固定了执行顺序,会造成父进程等待子进程 锁依然是公平竞争谁先抢到谁先执行,父进程可以做其他事情

2.最主要的区别: join是把进程的任务全部串行 锁可以锁任意代码 一行也可以 可以自己调整粒度

# 案例from multiprocessing import Process,Lock
import time,random

def task1(lock):
    # 要开始使用了 上锁
    lock.acquire()       #就等同于一个if判断
    print("hello iam jerry")
    time.sleep(random.randint(0, 2))
    print("gender is boy")
    time.sleep(random.randint(0, 2))
    print("age is  15")
    # 用完了就解锁
    lock.release()

def task2(lock):
    lock.acquire()
    print("hello iam owen")
    time.sleep(random.randint(0,2))
    print("gender is girl")
    time.sleep(random.randint(0,2))
    print("age is  48")
    lock.release()

def task3(lock):
    lock.acquire()
    print("hello iam jason")
    time.sleep(random.randint(0,2))
    print("gender is women")
    time.sleep(random.randint(0,2))
    print("age is  26")
    lock.release()

if __name__ == '__main__':
    lock = Lock()

    p1 = Process(target=task1,args=(lock,))
    p2 = Process(target=task2,args=(lock,))
    p3 = Process(target=task3,args=(lock,))

    p1.start()
    # p1.join()

    p2.start()
    # p2.join()

    p3.start()
    # p3.join()

    # print("故事结束!")
    
# 锁的伪代码实现 

# if my_lock == False:
#     my_lock = True
#      #被锁住的代码
      my_lock = False 解锁

IPC

进程间通讯

通讯指的就是交换数据

进程之间内存是相互隔离的,当一个进程想要把数据给另外一个进程,就需要考虑IPC

方式:

管道: 只能单向通讯,数据都是二进制

文件: 在硬盘上创建共享文件

缺点:速度慢

优点:数据量几乎没有限制

socket:

编程复杂度较高

共享内存:必须由操作系统来分配 要掌握的方式*

优点: 速度快

缺点: 数据量不能太大

共享内存的方式

1.Manager类 了解

Manager提供很多数据结构 list dict等等

Manager所创建出来的数据结构,具备进程间共享的特点

from multiprocessing import Process,Manager,Lock
import time


def task(data,l):
    l.acquire()
    num = data["num"] #
    time.sleep(0.1)
    data["num"] = num - 1
    l.release()

if __name__ == '__main__':
    # 让Manager开启一个共享的字典
    m = Manager()
    data = m.dict({"num":10})

    l = Lock()

    for i in range(10):
        p = Process(target=task,args=(data,l))
        p.start()

    time.sleep(2)
    print(data)

需要强调的是 Manager创建的一些数据结构是不带锁的 可能会出现问题

2.Queue队列 帮我们处理了锁的问题 重点

队列是一种特殊的数据结构,先存储的先取出 就像排队 先进先出

相反的是堆栈,先存储的后取出, 就像衣柜 桶装薯片 先进后出

扩展:

函数嵌套调用时 执行顺序是先进后出 也称之为函数栈

调用 函数时 函数入栈 函数结束就出栈

from multiprocessing import Queue
# 创建队列  不指定maxsize 则没有数量限制
q = Queue(3)
# 存储元素
# q.put("abc")
# q.put("hhh")
# q.put("kkk")

# print(q.get())
# q.put("ooo")    # 如果容量已经满了,在调用put时将进入阻塞状态 直到有人从队列中拿走数据有空位置 才会继续执行

#取出元素
# print(q.get())# 如果队列已经空了,在调用get时将进入阻塞状态 直到有人从存储了新的数据到队列中 才会继续

# print(q.get())
# print(q.get())


#block 表示是否阻塞 默认是阻塞的   # 当设置为False 并且队列为空时 抛出异常
q.get(block=True,timeout=2)
# block 表示是否阻塞 默认是阻塞的   # 当设置为False 并且队列满了时 抛出异常
# q.put("123",block=False,)
# timeout 表示阻塞的超时时间 ,超过时间还是没有值或还是没位置则抛出异常  仅在block为True有效

生产者消费者模型

是什么

模型 就是解决某个问题套路

产生数据的一方称之为生产者

处理数据的一方称之为消费者

例如: 爬虫 生活中到处都是这种模型

饭店 厨师就是生产者 你吃饭的人就是消费者

 

生产者和消费者出啥问题了? 解决什么问题

生产者和消费,处理速度不平衡,一方快一方慢,导致一方需要等待另一方

生产者消费者模型解决这个问题的思路: 怎么解决

原本,双方是耦合 在一起,消费必须等待生产者生成完毕在开始处理, 反过来

如果消费消费速度太慢,生产者必须等待其处理完毕才能开始生成下一个数据

解决的方案:

将双方分开来.一专门负责生成,一方专门负责处理

这样一来数据就不能直接交互了 双方需要一个共同的容器

生产者完成后放入容器,消费者从容器中取出数据

这样就解决了双发能力不平衡的问题,做的快的一方可以继续做,不需要等待另一方

# 案例
def eat(q):
    for i in range(10):
        # 要消费
        rose = q.get()
        time.sleep(random.randint(0, 2))
        print(rose,"吃完了!")

# 生产任务
def make_rose(q):
    for i in range(10):
        # 再生产
        time.sleep(random.randint(0, 2))
        print("第%s盘青椒肉丝制作完成!" % i)
        rose = "第%s盘青椒肉丝" % i
        # 将生成完成的数据放入队列中
        q.put(rose)

if __name__ == '__main__':
    # 创建一个共享队列
    q = Queue()
    make_p = Process(target=make_rose,args=(q,))
    eat_p =  Process(target=eat,args=(q,))


    make_p.start()
    eat_p.start()

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!