关于stream使用的好文推荐:
这里去看了ibm的一篇关于stream的文章,get到了不少stream还没遇到过的用法。老铁们可以去学习一下。[https://www.ibm.com/developerworks/cn/java/j-lo-java8streamapi/ ]
lambda优雅取出对象list中某个属性重复的集合数据
public class Test { // https://blog.csdn.net/qq_35902833/article/details/88351470 @Data @AllArgsConstructor static class Dog { String name; int age; } public static List<Dog> dogs = null; static { dogs = new ArrayList<Dog>() { { add(new Dog("黄一", 11)); add(new Dog("黄一", 22)); add(new Dog("黄三", 33)); } }; } // @SuppressWarnings("AlibabaAvoidManuallyCreateThread") public static void main(String[] args) { // dogs.stream() // .flatMap(i->i.getSonList().stream()) // lambda: list1.addAll(list2) // .collect(Collectors.toSet()); Map<String, Long> collect = dogs.stream(). collect(Collectors.groupingBy(i -> i.getName(), Collectors.counting())); System.out.println("-1-->" + collect.toString()); Map<String, List<Dog>> collect1 = dogs.stream() .collect(Collectors.groupingBy(Dog::getName)); System.out.println("-2-->" + collect1.toString()); IntSummaryStatistics summaryStatistics3 = dogs.stream().collect(Collectors.summarizingInt(Dog::getAge)); System.out.println("-3-->" + summaryStatistics3.getSum()); Map<String, IntSummaryStatistics> intSummaryStatistics = dogs.stream(). collect(Collectors.groupingBy(i -> i.getName(), Collectors.summarizingInt(Dog::getAge))); System.out.println("-4-->" + intSummaryStatistics); System.out.println("-5-->" + intSummaryStatistics.get("黄一").getSum()); IntSummaryStatistics collect21 = dogs.stream().collect(Collectors.summarizingInt(Dog::getAge)); Optional.ofNullable(collect21).ifPresent(System.out::println); System.out.println("-6-->" + Optional.ofNullable(collect21).get().getSum()); List<String> collect7 = dogs.stream(). collect(Collectors.groupingBy(i -> i.getName(), Collectors.counting())) .entrySet() .stream() .map(entry -> { return "key-->" + entry.getKey() + "; val-->" + entry.getValue(); }) .collect(Collectors.toList()); System.out.println("-7-->" + collect7); List<String> collect8 = dogs.stream(). collect(Collectors.groupingBy(i -> i.getName(), Collectors.counting())) .entrySet() .stream() .filter(entry -> entry.getValue() > 1) .map(entry -> entry.getKey()) .collect(Collectors.toList()); System.out.println("-7-->" + collect8); Consumer<Dog> consumer = (dog) -> System.out.println("-8-->" + dog.getAge()); Predicate<Dog> dogPredicate = (dog) -> dog.getAge() > 10; Test.dogs.stream() .filter(dogPredicate) .limit(3) .forEach(consumer); //-1-->{黄三=1, 黄一=2} //-2-->{黄三=[test.Dog(name=黄三, age=33)], 黄一=[test.Dog(name=黄一, age=11), test.Dog(name=黄一, age=22)]} //-3-->66 //-4-->{黄三=IntSummaryStatistics{count=1, sum=33, min=33, average=33.000000, max=33}, 黄一=IntSummaryStatistics{count=2, sum=33, min=11, average=16.500000, max=22}} //-5-->33 //IntSummaryStatistics{count=3, sum=66, min=11, average=22.000000, max=33} //-6-->66 //-7-->[key-->黄三; val-->1, key-->黄一; val-->2] //-7-->[黄一] //-8-->11 //-8-->22 //-8-->33 } }
//获取分享数Integer shareTatol = msgBrowseVos .stream() .filter(msgBrowse -> msgBrowse.getMsgType().equals(MsgBrowseConstants.msgType.SHARE)) .mapToInt(MsgBrowseVo::getCount) .max() .orElse(0);//-------对集合抽取属性求和--------------------------------------
@Builder @Data @EqualsAndHashCode(callSuper = false) static class Student { int id; String name; Integer unit; BigDecimal price; String groupId; } List<Student> list1 = Arrays.asList( new Student(1, "t1", 2, BigDecimal.valueOf(3), "one1"), new Student(2, "one", 2, BigDecimal.valueOf(4), "one2")); int sum1 = list1.stream() .mapToInt(p -> p.unit) .sum(); System.out.println("--01->" + sum1); BigDecimal amounts = list1.stream() .map(item -> item.price) .reduce(BigDecimal.ZERO, BigDecimal::add); amounts = amounts.setScale(1, BigDecimal.ROUND_UP); System.out.println("--02->" + amounts); BigDecimal amounts21 = list1.stream() .map(item -> item.price.multiply(BigDecimal.valueOf(item.unit))) .reduce(BigDecimal.ZERO, BigDecimal::add); amounts21 = amounts21.setScale(1, BigDecimal.ROUND_UP); System.out.println("--021->" + amounts21); BigDecimal sum2 = list1.stream() .map(Student::getPrice) .reduce(BigDecimal::add) .get(); sum2 = sum2.setScale(1, BigDecimal.ROUND_UP); System.out.println("--03->" + sum2); BigDecimal sum21 = list1.stream() .map(item -> item.price.multiply(BigDecimal.valueOf(item.unit))) .reduce(BigDecimal::add) .get(); sum21 = sum21.setScale(1, BigDecimal.ROUND_UP); System.out.println("--031->" + sum21); Integer totalSeller = list1.stream().map(Student::getUnit).reduce(0, Integer::sum); System.out.println("--04->" + totalSeller); BigDecimal totalSeller2 = list1.stream() .map(item -> item.price.multiply(BigDecimal.valueOf(item.unit))) .reduce(BigDecimal.ZERO, BigDecimal::add); totalSeller2 = totalSeller2.setScale(1, BigDecimal.ROUND_UP); System.out.println("--041->" + totalSeller2);
//★★★★ 注意此写法: .reduce((sum1, i) -> sum1 + i) // 新方法:可以用内建方法,也可以自己定义 //Map和Reduce操作是函数式编程的核心操作,因为其功能,reduce 又被称为折叠操作。 //SQL中类似 sum()、avg() 或者 count() 的聚集函数,实际上就是 reduce 操作,因为它们接收多个值并返回一个值。 //流API定义的 reduceh() 函数可以接受lambda表达式,并对所有值进行合并。 // IntStream这样的类有类似 average()、count()、sum() 的内建方法来做 reduce 操作,也有mapToLong()、mapToDouble() 方法来做转换。 double bill = list1.stream() .map((i) -> i + .12 * i) .reduce((sum1, i) -> sum1 + i) .get(); System.out.println("Total : " + bill); // 为每个订单加上12%的税 // // 使用lambda表达式 // list1.stream().map((i) -> i + .12*i) // .forEach(System.out::println);
public class Apple { private Integer id; private String name; private BigDecimal money; private Integer num; public Apple(Integer id, String name, BigDecimal money, Integer num) { this.id = id; this.name = name; this.money = money; this.num = num; } }
List<Apple> appleList = new ArrayList<>();//存放apple对象集合 Apple apple1 = new Apple(1,"苹果1",new BigDecimal("3.25"),10); Apple apple12 = new Apple(1,"苹果2",new BigDecimal("1.35"),20); Apple apple2 = new Apple(2,"香蕉",new BigDecimal("2.89"),30); Apple apple3 = new Apple(3,"荔枝",new BigDecimal("9.99"),40); appleList.add(apple1); appleList.add(apple12); appleList.add(apple2); appleList.add(apple3);
list.stream().mapToDouble(User::getHeight).sum()//和 list.stream().mapToDouble(User::getHeight).max()//最大 list.stream().mapToDouble(User::getHeight).min()//最小 list.stream().mapToDouble(User::getHeight).average()//平均值
// intStream、LongStream 和 DoubleStream 等流的类中,有个非常有用的方法叫做 summaryStatistics() 。可以返回 IntSummaryStatistics、LongSummaryStatistics 或者 DoubleSummaryStatistic s,描述流中元素的各种摘要数据。 //获取数字的个数、最小值、最大值、总和以及平均值 https://www.cnblogs.com/L-a-u-r-a/p/9077615.html List<Integer> primes = Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19, 23, 29); IntSummaryStatistics subject = primes.stream().mapToInt((x) -> x).summaryStatistics(); System.out.println("Highest prime number in List : " + subject.getMax()); System.out.println("Lowest prime number in List : " + subject.getMin()); System.out.println("Sum of all prime numbers : " + subject.getSum()); System.out.println("Average of all prime numbers : " + subject.getAverage());
最大值,最小值,平均值 // 为啥返回Optional? 如果stream为null怎么办, 这时候Optinal就很有意义了 Optional<Dish> mostCalorieDish = dishes.stream().max(Comparator.comparingInt(Dish::getCalories)); Optional<Dish> minCalorieDish = dishes.stream().min(Comparator.comparingInt(Dish::getCalories)); Double avgCalories = dishes.stream().collect(Collectors.averagingInt(Dish::getCalories)); IntSummaryStatistics summaryStatistics = dishes.stream().collect(Collectors.summarizingInt(Dish::getCalories)); double average = summaryStatistics.getAverage(); long count = summaryStatistics.getCount(); int max = summaryStatistics.getMax(); int min = summaryStatistics.getMin(); long sum = summaryStatistics.getSum();
// Collectors.maxBy 和 Collectors.minBy 来计算流中的最大或最小值。 Optional<Dish> maxDish = Dish.menu.stream().collect(Collectors.maxBy(Comparator.comparing(Dish::getCalories))); Optional<Dish> minDish = Dish.menu.stream().collect(Collectors.minBy(Comparator.comparing(Dish::getCalories)));
List转Map
//不用去重的情况: Map<Integer, String> collect1 = appleList.stream().collect(Collectors.toMap(Apple::getId, Apple::getName)); System.out.println(collect1);//{1=苹果1, 2=香蕉, 3=荔枝} Map<Integer, Apple> collect2 = appleList.stream().collect(Collectors.toMap(Apple::getId, appleList -> appleList)); System.out.println(collect2); //{1=Apple(id=1, name=苹果1, money=3.25, num=10), 2=Apple(id=2, name=香蕉, money=2.89, num=30), 3=Apple(id=3, name=荔枝, money=9.99, num=40)} // account -> account是一个返回本身的lambda表达式,其实还可以使用Function接口中的一个默认方法代替,使整个方法更简洁优雅: Map<Integer, Apple> collect3 = appleList.stream().collect(Collectors.toMap(Apple::getId, Function.identity())); System.out.println(collect3 ); //{1=Apple(id=1, name=苹果1, money=3.25, num=10), 2=Apple(id=2, name=香蕉, money=2.89, num=30), 3=Apple(id=3, name=荔枝, money=9.99, num=40)}
1. List转Map id为key,apple对象为value,可以这么做: /** * List -> Map * 需要注意的是: * toMap 如果集合对象有重复的key,会报错Duplicate key .... * apple1,apple12的id都为1。 * 可以用 (k1,k2)->k1 来设置,如果有重复的key,则保留key1,舍弃key2 */ Map<Integer, Apple> appleMap = appleList.stream().collect(Collectors.toMap(Apple::getId, a -> a,(k1,k2)->k1)); 打印appleMap: {1=Apple{id=1, name='苹果1', money=3.25, num=10}, 2=Apple{id=2, name='香蕉', money=2.89, num=30}, 3=Apple{id=3, name='荔枝', money=9.99, num=40}}
https://zacard.net/2016/03/17/java8-list-to-map/ 重复key的情况 代码如下: public Map<String, Account> getNameAccountMap(List<Account> accounts) { return accounts.stream().collect(Collectors.toMap(Account::getUsername, Function.identity())); } 这个方法可能报错(java.lang.IllegalStateException: Duplicate key),因为name是有可能重复的。toMap有个重载方法,可以传入一个合并的函数来解决key冲突问题: public Map<String, Account> getNameAccountMap(List<Account> accounts) { return accounts.stream().collect(Collectors.toMap(Account::getUsername, Function.identity(), (key1, key2) -> key2)); } 这里只是简单的使用后者覆盖前者来解决key重复问题。 指定具体收集的map toMap还有另一个重载方法,可以指定一个Map的具体实现,来收集数据: public Map<String, Account> getNameAccountMap(List<Account> accounts) { return accounts.stream().collect(Collectors.toMap(Account::getUsername, Function.identity(), (key1, key2) -> key2, LinkedHashMap::new)); }
2. 分组 List里面的对象元素,以某个属性来分组,例如,以id分组,将id相同的放在一起: //List 以ID分组 Map<Integer,List<Apple>> Map<Integer, List<Apple>> groupBy = appleList.stream().collect(Collectors.groupingBy(Apple::getId)); System.err.println("groupBy:"+groupBy); {1=[Apple{id=1, name='苹果1', money=3.25, num=10}, Apple{id=1, name='苹果2', money=1.35, num=20}], 2=[Apple{id=2, name='香蕉', money=2.89, num=30}], 3=[Apple{id=3, name='荔枝', money=9.99, num=40}]}
3. 过滤filter: 从集合中过滤出来符合条件的元素(map只是覆盖属性,filter根据判断属性来collect宿主bean): //过滤出符合条件的数据 List<Apple> filterList = appleList.stream().filter(a -> a.getName().equals("香蕉")).collect(Collectors.toList()); System.err.println("filterList:"+filterList); [Apple{id=2, name='香蕉', money=2.89, num=30}]
4. 求和: 将集合中的数据按照某个属性求和: BigDecimal: //计算 总金额 BigDecimal totalMoney = appleList.stream().map(Apple::getMoney).reduce(BigDecimal.ZERO, BigDecimal::add); System.err.println("totalMoney:"+totalMoney); //totalMoney:17.48 Integer: //计算 数量 int sum = appleList.stream().mapToInt(Apple::getNum).sum(); System.err.println("sum:"+sum); //sum:100 List<Integer> cc = new ArrayList<>(); cc.add(1);cc.add(2);cc.add(3); int sum = cc.stream().mapToInt(Integer::intValue).sum();//6
★5 Collectors.groupingBy进行分组、排序等操作: import javaX.Model.Student; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.function.Function; import java.util.stream.Collectors; public class FunctionX { public static void main(String[] args) { //1.分组计数 List<Student> list1= Arrays.asList(new Student(1,"one","zhao"),new Student(2,"one","qian"),new Student(3,"two","sun")); //1.1根据某个属性分组计数 Map<String,Long> result1=list1.stream().collect(Collectors.groupingBy(Student::getGroupId,Collectors.counting())); System.out.println(result1); //1.2根据整个实体对象分组计数,当其为String时常使用 Map<Student,Long> result2=list1.stream().collect(Collectors.groupingBy(Function.identity(),Collectors.counting())); System.out.println(result2); //1.3根据分组的key值对结果进行排序、放进另一个map中并输出 Map<String,Long> xMap=new HashMap<>(); result1.entrySet().stream().sorted(Map.Entry.<String,Long>comparingByKey().reversed()) //reversed不生效 .forEachOrdered(x->xMap.put(x.getKey(),x.getValue())); System.out.println(xMap); //2.分组,并统计其中一个属性值得sum或者avg:id总和 Map<String,Integer> result3=list1.stream().collect( Collectors.groupingBy(Student::getGroupId,Collectors.summingInt(Student::getId)) ); System.out.println(result3); } }
//去重 https://blog.csdn.net/lu930124/article/details/77595585/ import static java.util.Comparator.comparingLong; import static java.util.stream.Collectors.collectingAndThen; import static java.util.stream.Collectors.toCollection; // 根据id去重 List<Person> unique = appleList.stream().collect( collectingAndThen( toCollection(() -> new TreeSet<>(comparingLong(Apple::getId))), ArrayList::new)
https://www.cnblogs.com/yangweiqiang/p/6934671.html
来源:https://www.cnblogs.com/hahajava/p/9204500.html