java8 array、list操作 汇【5】)- Java8 Lambda list统计(求和、最大、最小、平均)

ⅰ亾dé卋堺 提交于 2020-02-22 08:23:14
 

 

 

 

 关于stream使用的好文推荐:
这里去看了ibm的一篇关于stream的文章,get到了不少stream还没遇到过的用法。老铁们可以去学习一下。[https://www.ibm.com/developerworks/cn/java/j-lo-java8streamapi/ ]

 

 

lambda优雅取出对象list中某个属性重复的集合数据

public class Test { // https://blog.csdn.net/qq_35902833/article/details/88351470

    @Data
    @AllArgsConstructor
    static class Dog {
        String name;
        int age;
    }
    public static List<Dog> dogs = null;
    static {
        dogs = new ArrayList<Dog>() {
            {
                add(new Dog("黄一", 11));
                add(new Dog("黄一", 22));
                add(new Dog("黄三", 33));
            }
        };
    }

    //    @SuppressWarnings("AlibabaAvoidManuallyCreateThread")
    public static void main(String[] args) {


//        dogs.stream()
//                .flatMap(i->i.getSonList().stream()) // lambda:  list1.addAll(list2)
//                .collect(Collectors.toSet());

        Map<String, Long> collect = dogs.stream().
                collect(Collectors.groupingBy(i -> i.getName(), Collectors.counting()));
        System.out.println("-1-->" + collect.toString());

        Map<String, List<Dog>> collect1 = dogs.stream()
                .collect(Collectors.groupingBy(Dog::getName));
        System.out.println("-2-->" + collect1.toString());

        IntSummaryStatistics summaryStatistics3 = dogs.stream().collect(Collectors.summarizingInt(Dog::getAge));
        System.out.println("-3-->" + summaryStatistics3.getSum());

        Map<String, IntSummaryStatistics> intSummaryStatistics = dogs.stream().
                collect(Collectors.groupingBy(i -> i.getName(), Collectors.summarizingInt(Dog::getAge)));
        System.out.println("-4-->" + intSummaryStatistics);
        System.out.println("-5-->" + intSummaryStatistics.get("黄一").getSum());

        IntSummaryStatistics collect21 = dogs.stream().collect(Collectors.summarizingInt(Dog::getAge));
        Optional.ofNullable(collect21).ifPresent(System.out::println);
        System.out.println("-6-->" + Optional.ofNullable(collect21).get().getSum());

        List<String> collect7 = dogs.stream().
                collect(Collectors.groupingBy(i -> i.getName(), Collectors.counting()))
                .entrySet()
                .stream()
                .map(entry -> {
                    return "key-->" + entry.getKey() + "; val-->" + entry.getValue();
                })
                .collect(Collectors.toList());
        System.out.println("-7-->" + collect7);


        List<String> collect8 = dogs.stream().
                collect(Collectors.groupingBy(i -> i.getName(), Collectors.counting()))
                .entrySet()
                .stream()
                .filter(entry -> entry.getValue() > 1)
                .map(entry -> entry.getKey())
                .collect(Collectors.toList());
        System.out.println("-7-->" + collect8);

        Consumer<Dog> consumer = (dog) -> System.out.println("-8-->" + dog.getAge());
        Predicate<Dog> dogPredicate = (dog) -> dog.getAge() > 10;
        Test.dogs.stream()
                .filter(dogPredicate)
                .limit(3)
                .forEach(consumer);
        //-1-->{黄三=1, 黄一=2}
        //-2-->{黄三=[test.Dog(name=黄三, age=33)], 黄一=[test.Dog(name=黄一, age=11), test.Dog(name=黄一, age=22)]}
        //-3-->66
        //-4-->{黄三=IntSummaryStatistics{count=1, sum=33, min=33, average=33.000000, max=33}, 黄一=IntSummaryStatistics{count=2, sum=33, min=11, average=16.500000, max=22}}
        //-5-->33
        //IntSummaryStatistics{count=3, sum=66, min=11, average=22.000000, max=33}
        //-6-->66
        //-7-->[key-->黄三; val-->1, key-->黄一; val-->2]
        //-7-->[黄一]
        //-8-->11
        //-8-->22
        //-8-->33

    }
}

 

 

 

 

 

 

 

 

 
//获取分享数Integer shareTatol = msgBrowseVos        .stream()        .filter(msgBrowse -> msgBrowse.getMsgType().equals(MsgBrowseConstants.msgType.SHARE))        .mapToInt(MsgBrowseVo::getCount)        .max()        .orElse(0);//-------对集合抽取属性求和--------------------------------------
@Builder
    @Data
    @EqualsAndHashCode(callSuper = false)
    static class Student {
        int id;
        String name;
        Integer unit;
        BigDecimal price;
        String groupId;
    }


        List<Student> list1 = Arrays.asList(
                new Student(1, "t1", 2, BigDecimal.valueOf(3), "one1"),
                new Student(2, "one", 2, BigDecimal.valueOf(4), "one2"));


        int sum1 = list1.stream()
                .mapToInt(p -> p.unit)
                .sum();
        System.out.println("--01->" + sum1);


        BigDecimal amounts = list1.stream()
                .map(item -> item.price)
                .reduce(BigDecimal.ZERO, BigDecimal::add);
        amounts = amounts.setScale(1, BigDecimal.ROUND_UP);
        System.out.println("--02->" + amounts);
        BigDecimal amounts21 = list1.stream()
                .map(item -> item.price.multiply(BigDecimal.valueOf(item.unit)))
                .reduce(BigDecimal.ZERO, BigDecimal::add);
        amounts21 = amounts21.setScale(1, BigDecimal.ROUND_UP);
        System.out.println("--021->" + amounts21);

        BigDecimal sum2 = list1.stream()
                .map(Student::getPrice)
                .reduce(BigDecimal::add)
                .get();
        sum2 = sum2.setScale(1, BigDecimal.ROUND_UP);
        System.out.println("--03->" + sum2);
        BigDecimal sum21 = list1.stream()
                .map(item -> item.price.multiply(BigDecimal.valueOf(item.unit)))
                .reduce(BigDecimal::add)
                .get();
        sum21 = sum21.setScale(1, BigDecimal.ROUND_UP);
        System.out.println("--031->" + sum21);


        Integer totalSeller = list1.stream().map(Student::getUnit).reduce(0, Integer::sum);
        System.out.println("--04->" + totalSeller);
        BigDecimal totalSeller2 = list1.stream()
                .map(item -> item.price.multiply(BigDecimal.valueOf(item.unit)))
                .reduce(BigDecimal.ZERO, BigDecimal::add);
        totalSeller2 = totalSeller2.setScale(1, BigDecimal.ROUND_UP);
        System.out.println("--041->" + totalSeller2);

 

       //★★★★ 注意此写法:  .reduce((sum1, i) -> sum1 + i)

        // 新方法:可以用内建方法,也可以自己定义
        //Map和Reduce操作是函数式编程的核心操作,因为其功能,reduce 又被称为折叠操作。
        //SQL中类似 sum()、avg() 或者 count() 的聚集函数,实际上就是 reduce 操作,因为它们接收多个值并返回一个值。
        //流API定义的 reduceh() 函数可以接受lambda表达式,并对所有值进行合并。
        // IntStream这样的类有类似 average()、count()、sum() 的内建方法来做 reduce 操作,也有mapToLong()、mapToDouble() 方法来做转换。
        double bill = list1.stream()
                .map((i) -> i + .12 * i)
                .reduce((sum1, i) -> sum1 + i)
                .get();
        System.out.println("Total : " + bill);

          // 为每个订单加上12%的税
//        // 使用lambda表达式
//        list1.stream().map((i) -> i + .12*i)
//                .forEach(System.out::println);

 

 

 

 

public class Apple {
    private Integer id;
    private String name;
    private BigDecimal money;
    private Integer num;
    public Apple(Integer id, String name, BigDecimal money, Integer num) {
        this.id = id;
        this.name = name;
        this.money = money;
        this.num = num;
    }
}

 

 

 

List<Apple> appleList = new ArrayList<>();//存放apple对象集合

Apple apple1 =  new Apple(1,"苹果1",new BigDecimal("3.25"),10);
Apple apple12 = new Apple(1,"苹果2",new BigDecimal("1.35"),20);
Apple apple2 =  new Apple(2,"香蕉",new BigDecimal("2.89"),30);
Apple apple3 =  new Apple(3,"荔枝",new BigDecimal("9.99"),40);

appleList.add(apple1);
appleList.add(apple12);
appleList.add(apple2);
appleList.add(apple3);

 


list.stream().mapToDouble(User::getHeight).sum()//和
list.stream().mapToDouble(User::getHeight).max()//最大
list.stream().mapToDouble(User::getHeight).min()//最小
list.stream().mapToDouble(User::getHeight).average()//平均值


 

// intStream、LongStream 和 DoubleStream 等流的类中,有个非常有用的方法叫做 summaryStatistics() 。可以返回 IntSummaryStatistics、LongSummaryStatistics 或者 DoubleSummaryStatistic s,描述流中元素的各种摘要数据。
        //获取数字的个数、最小值、最大值、总和以及平均值  https://www.cnblogs.com/L-a-u-r-a/p/9077615.html
        List<Integer> primes = Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19, 23, 29);
        IntSummaryStatistics subject = primes.stream().mapToInt((x) -> x).summaryStatistics();
        System.out.println("Highest prime number in List : " + subject.getMax());
        System.out.println("Lowest prime number in List : " + subject.getMin());
        System.out.println("Sum of all prime numbers : " + subject.getSum());
        System.out.println("Average of all prime numbers : " + subject.getAverage());

 

最大值,最小值,平均值
// 为啥返回Optional? 如果stream为null怎么办, 这时候Optinal就很有意义了
Optional<Dish> mostCalorieDish = dishes.stream().max(Comparator.comparingInt(Dish::getCalories));
Optional<Dish> minCalorieDish = dishes.stream().min(Comparator.comparingInt(Dish::getCalories));
Double avgCalories = dishes.stream().collect(Collectors.averagingInt(Dish::getCalories));

IntSummaryStatistics summaryStatistics = dishes.stream().collect(Collectors.summarizingInt(Dish::getCalories));
double average = summaryStatistics.getAverage();
long count = summaryStatistics.getCount();
int max = summaryStatistics.getMax();
int min = summaryStatistics.getMin();
long sum = summaryStatistics.getSum();

 

 

// Collectors.maxBy 和 Collectors.minBy 来计算流中的最大或最小值。
Optional<Dish> maxDish = Dish.menu.stream().collect(Collectors.maxBy(Comparator.comparing(Dish::getCalories))); 
Optional<Dish> minDish = Dish.menu.stream().collect(Collectors.minBy(Comparator.comparing(Dish::getCalories)));

 

 

 

 List转Map

 

//不用去重的情况:
Map<Integer, String> collect1 = appleList.stream().collect(Collectors.toMap(Apple::getId, Apple::getName));
System.out.println(collect1);//{1=苹果1, 2=香蕉, 3=荔枝}
Map<Integer, Apple> collect2 = appleList.stream().collect(Collectors.toMap(Apple::getId, appleList -> appleList));
System.out.println(collect2);
//{1=Apple(id=1, name=苹果1, money=3.25, num=10), 2=Apple(id=2, name=香蕉, money=2.89, num=30), 3=Apple(id=3, name=荔枝, money=9.99, num=40)}
// account -> account是一个返回本身的lambda表达式,其实还可以使用Function接口中的一个默认方法代替,使整个方法更简洁优雅:
Map<Integer, Apple> collect3 = appleList.stream().collect(Collectors.toMap(Apple::getId, Function.identity()));
System.out.println(collect3 );
//{1=Apple(id=1, name=苹果1, money=3.25, num=10), 2=Apple(id=2, name=香蕉, money=2.89, num=30), 3=Apple(id=3, name=荔枝, money=9.99, num=40)}

 

 

1. List转Map
id为key,apple对象为value,可以这么做:
/**
 * List -> Map
 * 需要注意的是:
 * toMap 如果集合对象有重复的key,会报错Duplicate key ....
 *  apple1,apple12的id都为1。
 *  可以用 (k1,k2)->k1 来设置,如果有重复的key,则保留key1,舍弃key2
 */
Map<Integer, Apple> appleMap = appleList.stream().collect(Collectors.toMap(Apple::getId, a -> a,(k1,k2)->k1));
打印appleMap:
{1=Apple{id=1, name='苹果1', money=3.25, num=10}, 2=Apple{id=2, name='香蕉', money=2.89, num=30}, 3=Apple{id=3, name='荔枝', money=9.99, num=40}}

 

https://zacard.net/2016/03/17/java8-list-to-map/
重复key的情况
代码如下:

public Map<String, Account> getNameAccountMap(List<Account> accounts) {
    return accounts.stream().collect(Collectors.toMap(Account::getUsername, Function.identity()));
}
这个方法可能报错(java.lang.IllegalStateException: Duplicate key),因为name是有可能重复的。toMap有个重载方法,可以传入一个合并的函数来解决key冲突问题:

public Map<String, Account> getNameAccountMap(List<Account> accounts) {
    return accounts.stream().collect(Collectors.toMap(Account::getUsername, Function.identity(), (key1, key2) -> key2));
}
这里只是简单的使用后者覆盖前者来解决key重复问题。

指定具体收集的map
toMap还有另一个重载方法,可以指定一个Map的具体实现,来收集数据:

public Map<String, Account> getNameAccountMap(List<Account> accounts) {
    return accounts.stream().collect(Collectors.toMap(Account::getUsername, Function.identity(), (key1, key2) -> key2, LinkedHashMap::new));
}

 

 

 

 

 

 2. 分组
 List里面的对象元素,以某个属性来分组,例如,以id分组,将id相同的放在一起:
//List 以ID分组 Map<Integer,List<Apple>>
Map<Integer, List<Apple>> groupBy = appleList.stream().collect(Collectors.groupingBy(Apple::getId));

System.err.println("groupBy:"+groupBy);
{1=[Apple{id=1, name='苹果1', money=3.25, num=10}, Apple{id=1, name='苹果2', money=1.35, num=20}], 2=[Apple{id=2, name='香蕉', money=2.89, num=30}], 3=[Apple{id=3, name='荔枝', money=9.99, num=40}]}

 

3. 过滤filter: 从集合中过滤出来符合条件的元素(map只是覆盖属性,filter根据判断属性来collect宿主bean):
//过滤出符合条件的数据
List<Apple> filterList = appleList.stream().filter(a -> a.getName().equals("香蕉")).collect(Collectors.toList());

System.err.println("filterList:"+filterList);
[Apple{id=2, name='香蕉', money=2.89, num=30}]

 

 

4. 求和: 将集合中的数据按照某个属性求和:
BigDecimal:
//计算 总金额
BigDecimal totalMoney = appleList.stream().map(Apple::getMoney).reduce(BigDecimal.ZERO, BigDecimal::add);
System.err.println("totalMoney:"+totalMoney); //totalMoney:17.48

Integer:
//计算 数量
int sum = appleList.stream().mapToInt(Apple::getNum).sum();
System.err.println("sum:"+sum); //sum:100

List<Integer> cc = new ArrayList<>();
cc.add(1);cc.add(2);cc.add(3);
int sum = cc.stream().mapToInt(Integer::intValue).sum();//6

 

 

★5    Collectors.groupingBy进行分组、排序等操作:
import javaX.Model.Student;

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.function.Function;
import java.util.stream.Collectors;

public class FunctionX {
    public static void main(String[] args) {
        //1.分组计数
        List<Student> list1= Arrays.asList(new Student(1,"one","zhao"),new Student(2,"one","qian"),new Student(3,"two","sun"));
        //1.1根据某个属性分组计数
        Map<String,Long> result1=list1.stream().collect(Collectors.groupingBy(Student::getGroupId,Collectors.counting()));
        System.out.println(result1);
        //1.2根据整个实体对象分组计数,当其为String时常使用
        Map<Student,Long> result2=list1.stream().collect(Collectors.groupingBy(Function.identity(),Collectors.counting()));
        System.out.println(result2);
        //1.3根据分组的key值对结果进行排序、放进另一个map中并输出
        Map<String,Long> xMap=new HashMap<>();
        result1.entrySet().stream().sorted(Map.Entry.<String,Long>comparingByKey().reversed()) //reversed不生效
                .forEachOrdered(x->xMap.put(x.getKey(),x.getValue()));
        System.out.println(xMap);

        //2.分组,并统计其中一个属性值得sum或者avg:id总和
        Map<String,Integer> result3=list1.stream().collect(
                Collectors.groupingBy(Student::getGroupId,Collectors.summingInt(Student::getId))
        );
        System.out.println(result3);

    }
}

 

 

//去重 https://blog.csdn.net/lu930124/article/details/77595585/

import static java.util.Comparator.comparingLong;
import static java.util.stream.Collectors.collectingAndThen;
import static java.util.stream.Collectors.toCollection;
 
// 根据id去重
     List<Person> unique = appleList.stream().collect(
                collectingAndThen(
                        toCollection(() -> new TreeSet<>(comparingLong(Apple::getId))), ArrayList::new)
 

 

 

 

 

 

https://www.cnblogs.com/yangweiqiang/p/6934671.html

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!