机器学习-KNN近邻算法

会有一股神秘感。 提交于 2019-11-27 15:29:15

参看文章:

《机器学习-周志华》

《机器学习实战-Peter Harrington》

《统计学习方法-李航》

算法介绍:

k近邻学习是一种常用的监督学习方法,其工作机制如下,给定测试样本,基于某种距离度量(曼哈顿距离、欧氏距离、切比雪夫距离、Lp距离、Minkowski距离)找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息来进行预测。

argmax(f(x))是使得 f(x)取得最大值所对应的变量点x

投票法:

分类任务中使用,选择k个样本出现最多的类别标记作为预测结果

平均法:

回归任务中使用,即将k个样本的实值输出标记的平均值作为预测结果

距离权重法:

称为k近邻算法的优化算法,为每个点的距离增加一个权重,使得距离近的点可以得到更大的权重,既可用于加权平均又可用于加权投票。

优点:

1.理论成熟,思想简单,既可以用来做分类又可以做回归

2.训练时间复杂度为O(n);无数据输入假定;

3.可用于数值型数据和离散型数据;

4.对异常值不敏感

缺点:

1.计算复杂度高,因无显示的训练过程

2.对k值、距离敏感,不同k值与距离计算方法可能结果不同

3.无法给出任何数据的基础结构信息

最近邻分类器(k = 1)

错误率(暂未看懂)

实现方法:

1. kd树

2. 传统法

代码:

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!