基于TF-IDF的文本关键词抽取方法
# * coding:utf-8_*_
# 作者 :XiangLin
# 创建时间 :06/01/2020 15:10
# 文件 :基于TF-IDF的文本关键词抽取方法.py
# IDE :PyCharm
# 采用TF-IDF方法提取文本关键词
# http://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
import sys,codecs
import pandas as pd
import numpy as np
import jieba.posseg
import jieba.analyse
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
"""
TF-IDF权重:
1、CountVectorizer 构建词频矩阵
2、TfidfTransformer 构建tfidf权值计算
3、文本的关键字
4、对应的tfidf矩阵
"""
# 数据预处理操作:分词,去停用词,词性筛选
def dataPrepos(text,stopkey):
l = []
pos = ['n','nz','v', 'vd', 'vn', 'l', 'a', 'd'] # 定义选取的词性
seg = jieba.posseg.cut(text) #分词
for i in seg:
if i.word not in stopkey and i.flag in pos:# 去停用词 + 词性筛选
l.append(i.word)
return l
# tf-idf获取文本top10关键词
def getKeywords_tfidf(data,stopkey,topk):
idList,titleList,abstractList = data['id'],data['title'],data['abstract']
corpus = []# 将所有文档输出到一个list中,一行就是一个文档
for index in range(len(idList)):
text = '%s。%s' % (titleList[index],abstractList[index]) # 拼接标题和摘要
text = dataPrepos(text,stopkey) # 文本预处理
text = " ".join(text) # 连接成字符串,空格分隔
corpus.append(text)
# 1、构建词频矩阵,将文本中的词语转换成词频矩阵
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus) # 词频矩阵,a[i][j]:表示j词在第i个文本中的词频
# 2、统计每个词的tf-idf权值
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(X)
# 3、获取词袋模型中的关键词
word = vectorizer.get_feature_names()
# 4、获取tf-idf矩阵,a[i][j]表示j词在i篇文本中的tf-idf权重
weight = tfidf.toarray()
# 5、打印词语权重
ids, titles, keys = [], [], []
for i in range(len(weight)):
print(u"-------这里输出第", i + 1, u"篇文本的词语tf-idf------")
ids.append(idList[i])
titles.append(titleList[i])
df_word,df_weight = [],[] # 当前文章的所有词汇列表、词汇对应权重列表
for j in range(len(word)):
print(word[j],weight[i][j])
df_word.append(word[j])
df_weight.append(weight[i][j])
df_word = pd.DataFrame(df_word,columns=['word'])
df_weight = pd.DataFrame(df_weight,columns=['weight'])
word_weight = pd.concat([df_word,df_weight],axis=1) # 拼接词汇列表和权重列表
word_weight = word_weight.sort_values(by = 'weight',ascending=False) # 按照权重值降序排列
keyword = np.array(word_weight['word']) # 选择词汇列并转成数组格式
word_split = [keyword[x] for x in range(0,topk)] # 抽取前topK个词汇作为关键词
word_split = " ".join(word_split)
keys.append(word_split.encode("utf-8"))
result = pd.DataFrame({"id": ids, "title": titles, "key": keys},columns=['id','title','key'])
return result
def main():
# 读取数据集
dataFile = '\\data\\sample_data - Copy.csv'
data = pd.read_csv(dataFile)
# 停用词表
stopWord = '\\data\\stopWord.txt'
stopkey = [w.strip() for w in codecs.open(stopWord, 'rb').readlines()]
# tf-idf关键词抽取
result = getKeywords_tfidf(data, stopkey, 10)
result.to_csv("\\data\\keys_TFIDF.csv", index=False)
if __name__ == '__main__':
main()
数据链接:链接:https://pan.baidu.com/s/1eJ2zQsFV2VGfRhAxREOIDA
提取码:mpev
向林
2020年2月8日于重庆城口
好好学习,天天向上,终有所获
来源:CSDN
作者:youif
链接:https://blog.csdn.net/youif/article/details/104221271