https://blog.csdn.net/joob000/article/details/81295144
理论推导
机器学习所针对的问题有两种:一种是回归,一种是分类。回归是解决连续数据的预测问题,而分类是解决离散数据的预测问题。线性回归是一个典型的回归问题。其实我们在中学时期就接触过,叫最小二乘法。
线性回归试图学得一个线性模型以尽可能准确地预测输出结果。
先从简单的模型看起:
首先,我们只考虑单组变量的情况,有:
使得
假设有m个数据,我们希望通过x预测的结果f(x)来估计y。其中w和b都是线性回归模型的参数。
为了能更好地预测出结果,我们希望自己预测的结果f(x)与y的差值尽可能地小,所以我们可以写出代价函数(cost function)如下:
接着代入f(x)的公式可以得到:
不难看出,这里的代价函数表示的是预测值f(x)与实际值y之间的误差的平方。它对应了常用的欧几里得距离简称“欧氏距离”。基于均方误差最小化来求解模型的方法我们叫做“最小二乘法”。在线性回归中,最小二乘法实质上就是找到一条直线,使所有样本数据到该直线的欧式距离之和最小,即误差最小。
我们希望这个代价函数能有最小值,那么就分别对其求w和b的偏导,使其等于0,求解方程。
先求偏导,得到下面两个式子:
很明显,公式中的参数m,b,w都与i无关,简化时可以直接提出来。
另这两个偏导等于0:
求解方程组,解得:
这样根据数据集中给出的x和y,我们可以求出w和b来构建简单的线性模型来预测结果。
接下来,推广到更一般的情况:
我们假设数据集中共有m个样本,每个样本有n个特征,用X矩阵表示样本和特征,是一个m×n的矩阵:
用Y矩阵表示标签,是一个m×1的矩阵:
为了构建线性模型,我们还需要假设一些参数:
(有时还要加一个偏差(bias)也就是, 为了推导方便没加,实际上结果是一样的)
好了,我们可以表示出线性模型了:
h(x)表示假设,即hypothesis。通过矩阵乘法,我们知道结果是一个n×1的矩阵。
跟前面推导单变量的线性回归模型时一样,列出代价函数:
这里的1/2并无太大意义,只是为了求导时能将参数正好消掉而加上。
代价函数代表了误差,我们希望它尽可能地小,所以要对它求偏导并令偏导数为0,求解方程。
在求偏导之前先展开一下:
接下来对 求导,先给出几个矩阵求导的公式:
对代价函数 求关于 的偏导,并令其等于0。
求偏导。
套用前面给出的矩阵求导公式。
最后化简得到:
好了,另这个偏导数等于0:
解得:
这是在可逆的前提下得到的,事实上存在不可逆的情况,我们在之后的ridge和lasso回归会针对这样的情况进行讨论,在此我们默认其是可逆的。
可以根据公式直接求得的值,但是当X维度很高时矩阵求逆计算量非常大,所以我们在实际应用中往往采用梯度下降的算法更新,方法如下
概述 梯度下降算法(Gradient Descent Optimization)
梯度下降算法(Gradient Descent Optimization)是神经网络模型训练最常用的优化算法。对于深度学习模型,基本都是采用梯度下降算法来进行优化训练的。梯度下降算法背后的原理:目标函数关于参数的梯度将是目标函数上升最快的方向。对于最小化优化问题,只需要将参数沿着梯度相反的方向前进一个步长,就可以实现目标函数的下降。这个步长又称为学习速率。参数更新公式如下:
其中是参数的梯度,根据计算目标函数采用数据量的不同,梯度下降算法又可以分为批量梯度下降算法(Batch Gradient Descent),随机梯度下降算法(Stochastic GradientDescent)和小批量梯度下降算法(Mini-batch Gradient Descent)。对于批量梯度下降算法,其是在整个训练集上计算的,如果数据集比较大,可能会面临内存不足问题,而且其收敛速度一般比较慢。随机梯度下降算法是另外一个极端,是针对训练集中的一个训练样本计算的,又称为在线学习,即得到了一个样本,就可以执行一次参数更新。所以其收敛速度会快一些,但是有可能出现目标函数值震荡现象,因为高频率的参数更新导致了高方差。小批量梯度下降算法是折中方案,选取训练集中一个小批量样本计算,这样可以保证训练过程更稳定,而且采用批量训练方法也可以利用矩阵计算的优势。这是目前最常用的梯度下降算法。
对于神经网络模型,借助于BP算法可以高效地计算梯度,从而实施梯度下降算法。但梯度下降算法一个老大难的问题是:不能保证全局收敛。如果这个问题解决了,深度学习的世界会和谐很多。梯度下降算法针对凸优化问题原则上是可以收敛到全局最优的,因为此时只有唯一的局部最优点。而实际上深度学习模型是一个复杂的非线性结构,一般属于非凸问题,这意味着存在很多局部最优点(鞍点),采用梯度下降算法可能会陷入局部最优,这应该是最头疼的问题。这点和进化算法如遗传算法很类似,都无法保证收敛到全局最优。因此,我们注定在这个问题上成为“高级调参师”。可以看到,梯度下降算法中一个重要的参数是学习速率,适当的学习速率很重要:学习速率过小时收敛速度慢,而过大时导致训练震荡,而且可能会发散。理想的梯度下降算法要满足两点:收敛速度要快;能全局收敛。为了这个理想,出现了很多经典梯度下降算法的变种,下面将分别介绍它们。
01
Momentum optimization
冲量梯度下降算法是BorisPolyak在1964年提出的,其基于这样一个物理事实:将一个小球从山顶滚下,其初始速率很慢,但在加速度作用下速率很快增加,并最终由于阻力的存在达到一个稳定速率。对于冲量梯度下降算法,其更新方程如下:
可以看到,参数更新时不仅考虑当前梯度值,而且加上了一个积累项(冲量),但多了一个超参,一般取接近1的值如0.9。相比原始梯度下降算法,冲量梯度下降算法有助于加速收敛。当梯度与冲量方向一致时,冲量项会增加,而相反时,冲量项减少,因此冲量梯度下降算法可以减少训练的震荡过程。TensorFlow中提供了这一优化器:tf.train.MomentumOptimizer(learning_rate=learning_rate,momentum=0.9)。
02
NAG
NAG算法全称Nesterov Accelerated Gradient,是YuriiNesterov在1983年提出的对冲量梯度下降算法的改进版本,其速度更快。其变化之处在于计算“超前梯度”更新冲量项,具体公式如下:
既然参数要沿着更新,不妨计算未来位置的梯度,然后合并两项作为最终的更新项,其具体效果如图1所示,可以看到一定的加速效果。在TensorFlow中,NAG优化器为:tf.train.MomentumOptimizer(learning_rate=learning_rate,momentum=0.9, use_nesterov=True)
图1 NAG效果图
03
AdaGrad
AdaGrad是Duchi在2011年提出的一种学习速率自适应的梯度下降算法。在训练迭代过程,其学习速率是逐渐衰减的,经常更新的参数其学习速率衰减更快,这是一种自适应算法。其更新过程如下:
其中是梯度平方的积累量,在进行参数更新时,学习速率要除以这个积累量的平方根,其中加上一个很小值是为了防止除0的出现。由于是该项逐渐增加的,那么学习速率是衰减的。考虑如图2所示的情况,目标函数在两个方向的坡度不一样,如果是原始的梯度下降算法,在接近坡底时收敛速度比较慢。而当采用AdaGrad,这种情况可以被改观。由于比较陡的方向梯度比较大,其学习速率将衰减得更快,这有利于参数沿着更接近坡底的方向移动,从而加速收敛。
图2 AdaGrad效果图
前面说到AdaGrad其学习速率实际上是不断衰减的,这会导致一个很大的问题,就是训练后期学习速率很小,导致训练过早停止,因此在实际中AdaGrad一般不会被采用,下面的算法将改进这一致命缺陷。不过TensorFlow也提供了这一优化器:tf.train.AdagradOptimizer。
04
RMSprop
RMSprop是Hinton在他的课程上讲到的,其算是对Adagrad算法的改进,主要是解决学习速率过快衰减的问题。其实思路很简单,类似Momentum思想,引入一个超参数,在积累梯度平方项进行衰减:
可以认为仅仅对距离时间较近的梯度进行积累,其中一般取值0.9,其实这样就是一个指数衰减的均值项,减少了出现的爆炸情况,因此有助于避免学习速率很快下降的问题。同时Hinton也建议学习速率设置为0.001。RMSprop是属于一种比较好的优化算法了,在TensorFlow中当然有其身影:tf.train.RMSPropOptimizer(learning_rate=learning_rate,momentum=0.9, decay=0.9, epsilon=1e-10)。
不得不说点题外话,同时期还有一个Adadelta算法,其也是Adagrad算法的改进,而且改进思路和RMSprop很像,但是其背后是基于一次梯度近似代替二次梯度的思想,感兴趣的可以看看相应的论文,这里不再赘述。
05
Adam
Adam全称Adaptive moment estimation,是Kingma等在2015年提出的一种新的优化算法,其结合了Momentum和RMSprop算法的思想。相比Momentum算法,其学习速率是自适应的,而相比RMSprop,其增加了冲量项。所以,Adam是两者的结合体:
可以看到前两项和Momentum和RMSprop是非常一致的,由于和的初始值一般设置为0,在训练初期其可能较小,第三和第四项主要是为了放大它们。最后一项是参数更新。其中超参数的建议值是。Adm是性能非常好的算法,在TensorFlow其实现如下: tf.train.AdamOptimizer(learning_rate=0.001,beta1=0.9, beta2=0.999, epsilon=1e-08)。
二
学习速率
前面也说过学习速率的问题,对于梯度下降算法,这应该是一个最重要的超参数。如果学习速率设置得非常大,那么训练可能不会收敛,就直接发散了;如果设置的比较小,虽然可以收敛,但是训练时间可能无法接受;如果设置的稍微高一些,训练速度会很快,但是当接近最优点会发生震荡,甚至无法稳定。不同学习速率的选择影响可能非常大,如图3所示。
图3 不同学习速率的训练效果
理想的学习速率是:刚开始设置较大,有很快的收敛速度,然后慢慢衰减,保证稳定到达最优点。所以,前面的很多算法都是学习速率自适应的。除此之外,还可以手动实现这样一个自适应过程,如实现学习速率指数式衰减:
在TensorFlow中,你可以这样实现:
initial_learning_rate = 0.1 decay_steps = 10000 decay_rate = 1/10 global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step, decay_steps, decay_rate) # decayed_learning_rate = learning_rate * # decay_rate ^ (global_step / decay_steps) optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9) training_op = optimizer.minimize(loss, global_step=global_step)
三、总结:
本文简单介绍了梯度下降算法的分类以及常用的改进算法,总结来看,优先选择学习速率自适应的算法如RMSprop和Adam算法,大部分情况下其效果是较好的。还有一定要特别注意学习速率的问题。其实还有很多方面会影响梯度下降算法,如梯度的消失与爆炸,这也是要额外注意的。最后不得不说,梯度下降算法目前无法保证全局收敛还将是一个持续性的数学难题。
四 、参考文献:
-
Anoverview of gradient descent optimization algorithms: http://sebastianruder.com/optimizing-gradient-descent/.
-
Hands-OnMachine Learning with Scikit-Learn and TensorFlow, Aurélien Géron, 2017.
-
NAG:http://proceedings.mlr.press/v28/sutskever13.pdf.
-
Adagrad:http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.
-
RMSprop:http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
-
Adadelta:https://arxiv.org/pdf/1212.5701v1.pdf.
-
Adam:https://arxiv.org/pdf/1412.6980.pdf.
-
不同的算法的效果可视化:https://imgur.com/a/Hqolp.
其中为学习率。算法部分主要着重公式推导,梯度下降算法在对应的机器学习项目实践中会详细介绍。
来源:https://www.cnblogs.com/LXL616/p/12286609.html