内存池,要在大块连续内存上,分配小块内存,指向小内存块的地址是否对齐,对系统性能有一定影响:因为 cpu 从主存上读取数据很慢的,合理的地址对齐可以减少访问次数,提高访问效率。看看 nginx 的[内存池地址对齐操作:
// p 是内存指针,a 是对齐字节数
#define ngx_align_ptr(p, a) \
(u_char *) (((uintptr_t) (p) + ((uintptr_t) a - 1)) & ~((uintptr_t) a - 1))
该宏的原理详细证明,请参考 《高效算法的奥秘》(第二版)第三章 2 的幂边界
- 当 $ a = 2^n$ 时,
~((uintptr_t) a - 1))
的 64 位二进制数,最右边 位数是 0。所以x & ~((uintptr_t) a - 1))
能被 整除。
a 对齐字节数 | 2 的幂 | 64位二进制 |
---|---|---|
1 | 1111111111111111111111111111111111111111111111111111111111111111 | |
2 | 1111111111111111111111111111111111111111111111111111111111111110 | |
4 | 1111111111111111111111111111111111111111111111111111111111111100 | |
8 | 1111111111111111111111111111111111111111111111111111111111111000 | |
16 | 1111111111111111111111111111111111111111111111111111111111110000 | |
32 | 1111111111111111111111111111111111111111111111111111111111100000 | |
64 | 1111111111111111111111111111111111111111111111111111111111000000 |
测试
测试源码
测试 ~((uintptr_t)a - 1))
// 测试 ~((uintptr_t)a - 1))
void test_a() {
int i, len;
uintptr_t l;
char* p;
char test[128];
int aligns[] = {1, 2, 4, 8, 16, 32, 64};
len = sizeof(aligns) / sizeof(int);
for (i = 0; i < len; i++) {
l = ~((uintptr_t)aligns[i] - 1);
p = i2bin(l, test, 128);
printf("a: %2d, d: %s\n", aligns[i], p);
}
}
结果:
a: 1, d: 1111111111111111111111111111111111111111111111111111111111111111
a: 2, d: 1111111111111111111111111111111111111111111111111111111111111110
a: 4, d: 1111111111111111111111111111111111111111111111111111111111111100
a: 8, d: 1111111111111111111111111111111111111111111111111111111111111000
a: 16, d: 1111111111111111111111111111111111111111111111111111111111110000
a: 32, d: 1111111111111111111111111111111111111111111111111111111111100000
a: 64, d: 1111111111111111111111111111111111111111111111111111111111000000
地址添加随机数,测试不同的对齐方式
// 测试数值是否对齐
void test_align_mod() {
char bin[128];
u_char *p, *a, *r;
int i, len, alignment;
int aligns[] = {1, 2, 4, 8, 16, 32, 64};
len = sizeof(aligns) / sizeof(int);
srand(time(NULL));
p = (u_char*)malloc(1024 * sizeof(u_char));
printf("p: %p\n", p);
r = p;
for (i = 0; i < len; i++) {
alignment = aligns[i];
r = p + rand() % 64;
a = ngx_align_ptr(r, alignment);
printf("a: %2d, r: %p, align: %p, abin: %s, mod: %lu\n", alignment, r,
a, i2bin((unsigned long long)a, bin, 128),
(uintptr_t)a % alignment);
}
free(p);
}
结果:
p: 0x7fd035800600
a: 1, r: 0x7fd03580062f, align: 0x7fd03580062f, abin: 11111111101000000110101100000000000011000101111, mod: 0
a: 2, r: 0x7fd03580061a, align: 0x7fd03580061a, abin: 11111111101000000110101100000000000011000011010, mod: 0
a: 4, r: 0x7fd035800635, align: 0x7fd035800638, abin: 11111111101000000110101100000000000011000111000, mod: 0
a: 8, r: 0x7fd035800613, align: 0x7fd035800618, abin: 11111111101000000110101100000000000011000011000, mod: 0
a: 16, r: 0x7fd035800633, align: 0x7fd035800640, abin: 11111111101000000110101100000000000011001000000, mod: 0
a: 32, r: 0x7fd035800602, align: 0x7fd035800620, abin: 11111111101000000110101100000000000011000100000, mod: 0
a: 64, r: 0x7fd03580061b, align: 0x7fd035800640, abin: 11111111101000000110101100000000000011001000000, mod: 0
测试对齐效率
在一块连续内存上,分配小块(一个范围内随机大小)内存,对齐地址和不对齐地址分别保存在不同的数组 aligns
和 unaligns
,再对数组里指向的数据地址进行读写。
#define RAND_AREA 128
#define ALIGN_COUNT (1024 * 1024 * 4)
#define UN_ALIGN_COUNT ALIGN_COUNT
#define BLOCK_SIZE (1024 * 1024 * 1024)
typedef struct {
size_t len;
u_char* data;
} ngx_str_t;
void test_mem_alloc(int argc, char** argv) {
u_char *p, *last, *end;
int size, alignment, i, j;
long long start, stop;
char buf[256];
ngx_str_t *s, *aligns, *ualigns;
alignment = (argc == 2) ? atoi(argv[1]) : 4;
size = BLOCK_SIZE * sizeof(char);
p = (u_char*)malloc(size);
last = p;
end = last + size;
// 保存对齐和不对齐的数据指针
aligns = (ngx_str_t*)malloc(ALIGN_COUNT * sizeof(ngx_str_t));
ualigns = (ngx_str_t*)malloc(UN_ALIGN_COUNT * sizeof(ngx_str_t));
i = 0;
srand(time(NULL));
last += 1;
// 不对齐
while (end > last) {
// 取不对齐的地址
size = rand() % (RAND_AREA - 1) + 1;
if ((uintptr_t(last + size) % 2) == 0) {
continue;
}
if ((last + size) > end) {
break;
}
ualigns[i].len = size;
ualigns[i].data = last;
last += size;
if (++i >= UN_ALIGN_COUNT) {
break;
}
}
i = 0;
// 对齐
while (end > last) {
last = (u_char*)ngx_align_ptr(last, alignment);
size = rand() % (RAND_AREA - 1) + 1;
if ((last + size) > end) {
break;
}
aligns[i].len = size;
aligns[i].data = last;
last += size;
if (++i >= ALIGN_COUNT) {
break;
}
}
// ------------------
// 对数组保存的指针进行读写操作。
// 写
start = mstime();
for (i = 0; i < UN_ALIGN_COUNT; i++) {
s = &ualigns[i];
memset(s->data, (char)(rand() % 255), s->len - 1);
s->data[s->len - 1] = '\0';
// printf("unalign: %p, data: %s\n", s->data, s->data);
}
stop = mstime();
printf("ualign write, alignment: %d, count: %d, cost: %lld ms\n", alignment,
i, stop - start);
start = mstime();
for (i = 0; i < ALIGN_COUNT; i++) {
s = &aligns[i];
memset(s->data, (char)(rand() % 255), s->len - 1);
s->data[s->len - 1] = '\0';
}
stop = mstime();
printf("align write, alignment: %d, count: %d, cost: %lld ms\n", alignment,
i, stop - start);
// 读
start = mstime();
for (i = 0; i < UN_ALIGN_COUNT; i++) {
s = &ualigns[i];
strncpy(buf, (char*)s->data, s->len);
// printf("unalign: %p, len: %lu\n", s->data, s->len);
}
stop = mstime();
printf("ualign read, alignment: %d, count: %d, cost: %lld ms\n", alignment,
i, stop - start);
start = mstime();
for (i = 0; i < ALIGN_COUNT; i++) {
s = &aligns[i];
strncpy(buf, (char*)s->data, s->len);
// printf("align: %p, len: %lu\n", s->data, s->len);
}
stop = mstime();
printf("align read, alignment: %d, count: %d, cost: %lld ms\n", alignment,
i, stop - start);
free(aligns);
free(ualigns);
free(p);
}
结果:
# gcc -g -O0 align.cpp -o align && ./align 4
ualign write, alignment: 4, count: 4194304, cost: 256 ms
align write, alignment: 4, count: 4194304, cost: 250 ms
ualign read, alignment: 4, count: 4194304, cost: 179 ms
align read, alignment: 4, count: 4194304, cost: 185 ms
# gcc -g -O0 align.cpp -o align && ./align 8
ualign write, alignment: 8, count: 4194304, cost: 235 ms
align write, alignment: 8, count: 4194304, cost: 255 ms
ualign read, alignment: 8, count: 4194304, cost: 183 ms
align read, alignment: 8, count: 4194304, cost: 189 ms
# gcc -g -O0 align.cpp -o align && ./align 16
ualign write, alignment: 16, count: 4194304, cost: 256 ms
align write, alignment: 16, count: 4194304, cost: 285 ms
ualign read, alignment: 16, count: 4194304, cost: 184 ms
align read, alignment: 16, count: 4194304, cost: 182 ms
# gcc -g -O0 align.cpp -o align && ./align 32
ualign write, alignment: 32, count: 4194304, cost: 233 ms
align write, alignment: 32, count: 4194304, cost: 263 ms
ualign read, alignment: 32, count: 4194304, cost: 175 ms
align read, alignment: 32, count: 4194304, cost: 165 ms
# gcc -g -O0 align.cpp -o align && ./align 64
ualign write, alignment: 64, count: 4194304, cost: 238 ms
align write, alignment: 64, count: 4194304, cost: 298 ms
ualign read, alignment: 64, count: 4194304, cost: 175 ms
align read, alignment: 64, count: 4194304, cost: 169 ms
测试 nginx 内存池
内存池源码扣出来改造了一下,进行测试源码,地址对齐与否好像性能貌似没什么很大的区别。
int main(int argc, char **argv) {
int i, unaligns;
size_t size, total, used;
unsigned is_align;
u_char *p;
char buf[1024];
ngx_pool_t *pool;
long long start, stop;
ngx_str_t *array, *s;
srand(time(NULL));
is_align = (argc == 2 && !strcasecmp(argv[1], "1")) ? 1 : 0;
unaligns = 0;
array = (ngx_str_t *)malloc(ALLOC_COUNT * sizeof(ngx_str_t));
// 申请写数据
start = mstime();
pool = ngx_create_pool(ngx_pagesize, is_align);
for (i = 0; i < ALLOC_COUNT; i++) {
size = rand() % (1024 - 1) + 1;
p = (u_char *)ngx_palloc(pool, size * sizeof(u_char));
memset(p, (u_char)(rand() % 255), size - 1);
p[size - 1] = '\0';
array[i].data = p;
array[i].len = size;
used += size;
}
stop = mstime();
calc_test(pool, used, stop - start);
// 读数据
start = mstime();
for (i = 0; i < ALLOC_COUNT; i++) {
s = &array[i];
strncpy(buf, (char *)s->data, s->len);
}
stop = mstime();
printf("read align: %d, blocks: %d, time: %llu ms\n", pool->is_align, i,
stop - start);
ngx_destroy_pool(pool);
return 0;
}
结果:
$ gcc -g test_pool_align.cpp -o align && ./align 0
write align: 0, max fit: 8, blocks: 133089, total: 545132544, used: 536677369, use rate: 0.984490, time: 246 ms
read align: 0, blocks: 1048576, time: 71 ms
$ gcc -g test_pool_align.cpp -o align && ./align 1
write align: 1, max fit: 8, blocks: 133908, total: 548487168, used: 536746859, use rate: 0.978595, time: 254 ms
read align: 1, blocks: 1048576, time: 71 ms
总结
从测试例子中,对齐和不对齐效率没有明显差距(cost
耗费时间),反而对齐的地址有时候花的时间还多,实践和理论对不上啊。——不知道问题出在哪里,能力有限,欢迎指正。
参考
来源:CSDN
作者:wenfh2020
链接:https://blog.csdn.net/wenfh2020/article/details/104228926