人工智能教程 - 数学基础课程1.2 - 数学分析(三)-3

不羁岁月 提交于 2020-02-07 02:13:41

一阶线性

First-order linear

a(x)y+b(x)y=c(x)a(x)y'+b(x)y=c(x)

linear: ay1+by2=cay_1+by_2=c

齐次(homogeneous) (c=0)

Standard linear from y’+ p(x)y = q(x)

Models
温度-浓度模型
mixing
Decay, bank some motion
传导(Conducion)

Newton cooling law:

dTdt=k(TeT)\frac{dT}{dt}=k(T_e-T)

k>0 <— conductivity
T(0) = T0T_0

扩散(Diffusion)

C = salt concentration inside
CeC_e = salt conc. outside
半透明膜(membrare wall)

dCdt=k1(CeC)\frac{dC}{dt}=k_1(C_e-C)

k1k_1> 0

General linear equation:

dTdt+kT=kTe\frac{dT}{dt}+kT=kT_e

Method: y’+ py = q

  1. standard linear form
  2. Calc epdxe^{\int pdx} : int factor
  3. Mulit both sides by epdxe^{\int pdx}
  4. Integrate

Temp: dTdt+kT=kTe)\frac{dT}{dt}+kT=kT_e)

p: ekte^{ kt} Multi by ekte^{ kt}
(ektT)=k.Te.ekt(e^{ kt}T)' = k.T_e.e^{ kt}

T(0) = T0T_0 ; C = T0T_0
k>0

Integral: ektTe^{ kt}T = kTe(t)ekt+c\int kT_e(t)e^{kt}+c
T=ekt01kTe(t1)ekt1dt1+cektT = e^{ -kt}\int _0^1kT_e(t_1)e^{kt_1}dt_1+ce^{-kt}

稳定态(steady state solution)

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!