Directly use Intel mkl library on Scipy sparse matrix to calculate A dot A.T with less memory

徘徊边缘 提交于 2019-11-27 14:55:29

Look at the Python code for the scipy sparse product. Notice that it calls the compiled code in 2 passes.

It looks like the mkl code does the same thing

https://software.intel.com/en-us/node/468640

If request=1, the routine computes only values of the array ic of length m + 1, the memory for this array must be allocated beforehand. On exit the value ic(m+1) - 1 is the actual number of the elements in the arrays c and jc.

If request=2, the routine has been called previously with the parameter request=1, the output arrays jc and c are allocated in the calling program and they are of the length ic(m+1) - 1 at least.

You first allocated ic based on the number of rows of C (you know that from the inputs), and call the mkl code with request=1.

For request=2 you have to allocate c and jc arrays, based on the size in ic(m+1) - 1. This is not the same as the number of nnz in the input arrays.

You are using request1 = c_int(0), which requires that the c arrays be the correct size - which you don't know without actually performing the dot (or a request 1).

==================

File:        /usr/lib/python3/dist-packages/scipy/sparse/compressed.py
Definition:  A._mul_sparse_matrix(self, other)

pass 1 allocates indptr (note size), and passes the pointers (data doesn't matter at this pass)

    indptr = np.empty(major_axis + 1, dtype=idx_dtype)

    fn = getattr(_sparsetools, self.format + '_matmat_pass1')
    fn(M, N,
       np.asarray(self.indptr, dtype=idx_dtype),
       np.asarray(self.indices, dtype=idx_dtype),
       np.asarray(other.indptr, dtype=idx_dtype),
       np.asarray(other.indices, dtype=idx_dtype),
       indptr)

    nnz = indptr[-1]

pass 2 allocates indptr (different size), and based on nnz indices and data.

    indptr = np.asarray(indptr, dtype=idx_dtype)
    indices = np.empty(nnz, dtype=idx_dtype)
    data = np.empty(nnz, dtype=upcast(self.dtype, other.dtype))

    fn = getattr(_sparsetools, self.format + '_matmat_pass2')
    fn(M, N, np.asarray(self.indptr, dtype=idx_dtype),
       np.asarray(self.indices, dtype=idx_dtype),
       self.data,
       np.asarray(other.indptr, dtype=idx_dtype),
       np.asarray(other.indices, dtype=idx_dtype),
       other.data,
       indptr, indices, data)

Last make a new array using these arrays.

    return self.__class__((data,indices,indptr),shape=(M,N))

The mkl library should be used in the same way.

===================

https://github.com/scipy/scipy/blob/master/scipy/sparse/sparsetools/csr.h

has c code for csr_matmat_pass1 and csr_matmat_pass2

====================

In case it helps, here's a pure Python implementation of these passes. A literal translation without any attempt to take advantage of any array operations.

def pass1(A, B):
    nrow,ncol=A.shape
    Aptr=A.indptr
    Bptr=B.indptr
    Cp=np.zeros(nrow+1,int)
    mask=np.zeros(ncol,int)-1
    nnz=0
    for i in range(nrow):
        row_nnz=0
        for jj in range(Aptr[i],Aptr[i+1]):
            j=A.indices[jj]
            for kk in range(Bptr[j],Bptr[j+1]):
                k=B.indices[kk]
                if mask[k]!=i:
                    mask[k]=i
                    row_nnz += 1
        nnz += row_nnz
        Cp[i+1]=nnz
    return Cp

def pass2(A,B,Cnnz):
    nrow,ncol=A.shape
    Ap,Aj,Ax=A.indptr,A.indices,A.data
    Bp,Bj,Bx=B.indptr,B.indices,B.data

    next = np.zeros(ncol,int)-1
    sums = np.zeros(ncol,A.dtype)

    Cp=np.zeros(nrow+1,int)
    Cj=np.zeros(Cnnz,int)
    Cx=np.zeros(Cnnz,A.dtype)
    nnz = 0
    for i in range(nrow):
        head = -2
        length = 0
        for jj in range(Ap[i], Ap[i+1]):
            j, v = Aj[jj], Ax[jj]
            for kk in range(Bp[j], Bp[j+1]):
                k = Bj[kk]
                sums[k] += v*Bx[kk]
                if (next[k]==-1):
                    next[k], head=head, k
                    length += 1
        print(i,sums, next)
        for _ in range(length):
            if sums[head] !=0:
                Cj[nnz], Cx[nnz] = head, sums[head]
                nnz += 1
            temp = head
            head = next[head]
            next[temp], sums[temp] = -1, 0
        Cp[i+1] = nnz            
    return Cp, Cj, Cx                  

def pass0(A,B):
    Cp = pass1(A,B)
    nnz = Cp[-1]
    Cp,Cj,Cx=pass2(A,B,nnz)
    N,M=A.shape[0], B.shape[1]
    C=sparse.csr_matrix((Cx, Cj, Cp), shape=(N,M))
    return C

Both A and B have to be csr. It using a transpose it needs conversion, e.g. B = A.T.tocsr().

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!