import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
creditcard = 'C:/Users/Amber/Documents/唐宇迪-机器学习课程资料/机器学习算法配套案例实战/逻辑回归-信用卡欺诈检测/逻辑回归-信用卡欺诈检测/creditcard.csv'
data = pd.read_csv(creditcard)
print(data.head())
Time V1 V2 V3 ... V27 V28 Amount Class
0 0.0 -1.359807 -0.072781 2.536347 ... 0.133558 -0.021053 149.62 0
1 0.0 1.191857 0.266151 0.166480 ... -0.008983 0.014724 2.69 0
2 1.0 -1.358354 -1.340163 1.773209 ... -0.055353 -0.059752 378.66 0
3 1.0 -0.966272 -0.185226 1.792993 ... 0.062723 0.061458 123.50 0
4 2.0 -1.158233 0.877737 1.548718 ... 0.219422 0.215153 69.99 0
[5 rows x 31 columns]
上面的数据,Time不必关心,V1-V28 共28个参数,amount为交易金额, 该数据集的特征已经被提取好,非原始数据。
数据分析的目的,将0 正确的类别,与1 异常的类别能够区分开
真实的数据集,应该是正常样本的居多,异常的样本极少
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
creditcard = 'C:/Users/Amber/Documents/唐宇迪-机器学习课程资料/机器学习算法配套案例实战/逻辑回归-信用卡欺诈检测/逻辑回归-信用卡欺诈检测/creditcard.csv'
data = pd.read_csv(creditcard)
# print(data.head())
count_classes = pd.value_counts(data['Class'], sort = True).sort_index()
# 透过value_counts就可以计算出Class那一列中为1与0的sample各有多少个
# 在Calss列中,0表示正常,1表示异常
count_classes.plot(kind = 'bar') # kind=‘bar’ 表示画的是条形图
plt.title("Fraud class histogram")
plt.xlabel("Class")
plt.ylabel("Frequency")
透过数据的大概分布,就可以看到样本分布极不均衡。 针对此类数据集,常用过采样/下采样去处理
下采样:让不均衡的数据变为均衡数据的方法,让0/1一样小即可。即,如果class=1的样本有几百个,则class=0的样本也一样取几百个,再将这些样本组合在一起。 即使得class=0与class=1的样本数一样少。
上采样:让不均衡的数据变为均衡数据的方法,让0/1一样多即可。即,如果class=1的样本有几百个,则采用样本生成策略,让生成出来的class=1的样本与class=0的样本数一样多。
分析原始数据,发现Amount这一列,数值分布差异比较大。做机器学习时有一个规则,即首先让数值分布差异差不多。
拿V28与Amount这两列为例,V28的数值分布在-1~1之间,而Amount这一列的数值分布在0-400之间,机器学习中有一个潜规则,认为数值大的元素更加重要。
使用sklearn提供的预处理功能/标准化模块,将Amount这一列标准化,重新定义为-1~1之间
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import StandardScaler
creditcard = 'C:/Users/Amber/Documents/唐宇迪-机器学习课程资料/机器学习算法配套案例实战/逻辑回归-信用卡欺诈检测/逻辑回归-信用卡欺诈检测/creditcard.csv'
data = pd.read_csv(creditcard)
# 使用sklearn提供的预处理功能/标准化模块,将Amount这一列标准化,重新定义为-1~1之间使用
data['normAmount'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1, 1))
# 此处,StandardScaler().fit_transform(data['Amount'].reshape(-1, 1))会报错,提示
# AttributeError: 'Series' object has no attribute 'reshape',应该更新为
# StandardScaler().fit_transform(data['Amount'].values.reshape(-1, 1))
data = data.drop(['Time','Amount'],axis=1) # 去掉Time与Amount两个列,此二列将不再使用
print(data.head())
V1 V2 V3 ... V28 Class normAmount
0 -1.359807 -0.072781 2.536347 ... -0.021053 0 0.244964
1 1.191857 0.266151 0.166480 ... 0.014724 0 -0.342475
2 -1.358354 -1.340163 1.773209 ... -0.059752 0 1.160686
3 -0.966272 -0.185226 1.792993 ... 0.061458 0 0.140534
4 -1.158233 0.877737 1.548718 ... 0.215153 0 -0.073403
特征数据已经做好, 下面为下采样
X = data.ix[:, data.columns != 'Class'] # 所有的行都取进来,除了特征值Class
y = data.ix[:, data.columns == 'Class'] # 所有行的特征值都取进来,只取Class这一列
# Number of data points in the minority class
number_records_fraud = len(data[data.Class == 1]) # Class等于1的样本的数量
fraud_indices = np.array(data[data.Class == 1].index) # 取出Class等于1的样本对应的行索引
# Picking the indices of the normal classes
normal_indices = data[data.Class == 0].index # 将Class=0的样本对应的索引取出来
# Out of the indices we picked, randomly select "x" number (number_records_fraud)
random_normal_indices = np.random.choice(normal_indices, number_records_fraud, replace = False) # 在normal_indices个sample中随机取出number_records_fraud个sample,不代替
random_normal_indices = np.array(random_normal_indices) # 取出这些样本的index值,组成array
# Appending the 2 indices
under_sample_indices = np.concatenate([fraud_indices,random_normal_indices])
# 将这些取出的sample合并在一起
# Under sample dataset
under_sample_data = data.iloc[under_sample_indices,:]
X_undersample = under_sample_data.iloc[:, under_sample_data.columns != 'Class'] #特征
y_undersample = under_sample_data.iloc[:, under_sample_data.columns == 'Class'] # label
# Showing ratio
print("Percentage of normal transactions: ", len(under_sample_data[under_sample_data.Class == 0])/len(under_sample_data))
print("Percentage of fraud transactions: ", len(under_sample_data[under_sample_data.Class == 1])/len(under_sample_data))
print("Total number of transactions in resampled data: ", len(under_sample_data))
Percentage of normal transactions: 0.5
Percentage of fraud transactions: 0.5
Total number of transactions in resampled data: 984
各取出50%。 下采样会有些问题
交叉验证/比较难选的是参数选择,调参
from sklearn.model_selection import train_test_split
# Whole dataset,先把整体的数据集进行切分
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0)
# test_size = 0.3, 表示30%的数据作为训练集合,70%的数据作为测试集
# random_state = 0,这样可以排除样本的影响
# train会对原始数据集进行洗牌,洗完后采取切分,保证随机切分
print("Number transactions train dataset: ", len(X_train))
print("Number transactions test dataset: ", len(X_test))
print("Total number of transactions: ", len(X_train)+len(X_test))
# Undersampled dataset
X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = train_test_split(X_undersample
,y_undersample
,test_size = 0.3
,random_state = 0)
print("")
print("Number transactions train dataset: ", len(X_train_undersample))
print("Number transactions test dataset: ", len(X_test_undersample))
print("Total number of transactions: ", len(X_train_undersample)+len(X_test_undersample))
Number transactions train dataset: 199364
Number transactions test dataset: 85443
Total number of transactions: 284807
Number transactions train dataset: 688
Number transactions test dataset: 296
Total number of transactions: 984
利用下采样数据集分割出来的数据集进行训练,利用原始数据集分割出来的test数据集进行测试。
模型容易找,但如何评估模型?
1- 用精度评估,但往往精度是骗人的,比如该案例,如果按照精度评估,则可能会导致无法找出小概率时间,即欺诈事件,或癌症检测事件,无法检测出癌症患者
2- 用recall,查全率 作为模型评估标准更加科学 Recall = TP/(TP+FN)
计算得到的平均recall值越大,效果越佳
#Recall = TP/(TP+FN)
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import confusion_matrix,recall_score,classification_report
def printing_Kfold_scores(x_train_data,y_train_data):
fold = KFold(len(y_train_data),5,shuffle=False)
# 机器学习时,首先应作交叉验证,此处,将原始数据集切分为5份
# Different C parameters
c_param_range = [0.01,0.1,1,10,100]
# 正则化惩罚项,在做机器学习时,此参数应该被定义。
# 模型除了应满足训练数据,还要符合测试数据,并且模型的泛化能力/越平稳越好。过拟合往往是由于模型的权重过大引起
# 正则化惩罚项目:惩罚theta
# L2正则化:损失函数loss + 1/2 * W.^2, loss值低这为佳 。 lambda * L2 中,设置惩罚项lambda来设置惩罚力度。
# L1正则化: loss + |W|
# 透过交叉验证,来确定哪个惩罚项目lamda<[0.01,0.1,1,10,100]> 效果更好。即 c_param_range 就是惩罚项lambda
results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score'])
results_table['C_parameter'] = c_param_range
# the k-fold will give 2 lists: train_indices = indices[0], test_indices = indices[1]
j = 0
for c_param in c_param_range: # 循环计算每个c值,判断哪个c值比较好
print('-------------------------------------------')
print('C parameter: ', c_param)
print('-------------------------------------------')
print('')
recall_accs = []
for iteration, indices in enumerate(fold,start=1): #进行交叉验证
# Call the logistic regression model with a certain C parameter
lr = LogisticRegression(C = c_param, penalty = 'l1') # 先实例化模型
# Use the training data to fit the model. In this case, we use the portion of the fold to train the model
# with indices[0]. We then predict on the portion assigned as the 'test cross validation' with indices[1]
lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel()) # 模型训练
# Predict values using the test indices in the training data
y_pred_undersample = lr.predict(x_train_data.iloc[indices[1],:].values) # 用交叉验证集去测试效果
# Calculate the recall score and append it to a list for recall scores representing the current c_parameter
recall_acc = recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample)
recall_accs.append(recall_acc)
print('Iteration ', iteration,': recall score = ', recall_acc)
# The mean value of those recall scores is the metric we want to save and get hold of.
results_table.ix[j,'Mean recall score'] = np.mean(recall_accs)
j += 1
print('')
print('Mean recall score ', np.mean(recall_accs))
print('')
best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter']
# Finally, we can check which C parameter is the best amongst the chosen.
print('*********************************************************************************')
print('Best model to choose from cross validation is with C parameter = ', best_c)
print('*********************************************************************************')
return best_c
实际执行会报错,参照下文 https://blog.csdn.net/weixin_40283816/article/details/83242777
测试程序如下,未完。。。
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import confusion_matrix,recall_score,classification_report
creditcard = 'C:/Users/Amber/Documents/唐宇迪-机器学习课程资料/机器学习算法配套案例实战/逻辑回归-信用卡欺诈检测/逻辑回归-信用卡欺诈检测/creditcard.csv'
data = pd.read_csv(creditcard)
# print(data.head())
# count_classes = pd.value_counts(data['Class'], sort = True).sort_index()
# 透过value_counts就可以计算出Class那一列中为1与0的sample各有多少个
# 在Calss列中,0表示正常,1表示异常
# count_classes.plot(kind = 'bar') # kind=‘bar’ 表示画的是条形图
# plt.title("Fraud class histogram")
# plt.xlabel("Class")
# plt.ylabel("Frequency")
# 使用sklearn提供的预处理功能/标准化模块,将Amount这一列标准化,重新定义为-1~1之间使用
data['normAmount'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1, 1))
data = data.drop(['Time','Amount'],axis=1)
#print(data.head())
X = data.loc[:, data.columns != 'Class'] # 所有的行都取进来,除了特征值Class
y = data.loc[:, data.columns == 'Class'] # 所有行的特征值都取进来,只取Class这一列
# Number of data points in the minority class
number_records_fraud = len(data[data.Class == 1]) # Class等于1的样本的数量
fraud_indices = np.array(data[data.Class == 1].index) # 取出Class等于1的样本对应的行索引
# Picking the indices of the normal classes
normal_indices = data[data.Class == 0].index # 将Class=0的样本对应的索引取出来
# Out of the indices we picked, randomly select "x" number (number_records_fraud)
random_normal_indices = np.random.choice(normal_indices, number_records_fraud, replace = False) # 在normal_indices个sample中随机取出number_records_fraud个sample,不代替
random_normal_indices = np.array(random_normal_indices) # 取出这些样本的index值,组成array
# Appending the 2 indices
under_sample_indices = np.concatenate([fraud_indices,random_normal_indices])
# 将这些取出的sample合并在一起
# Under sample dataset
under_sample_data = data.iloc[under_sample_indices,:]
X_undersample = under_sample_data.loc[:, under_sample_data.columns != 'Class'] #特征
y_undersample = under_sample_data.loc[:, under_sample_data.columns == 'Class'] # label
# Showing ratio
# print("Percentage of normal transactions: ", len(under_sample_data[under_sample_data.Class == 0])/len(under_sample_data))
# print("Percentage of fraud transactions: ", len(under_sample_data[under_sample_data.Class == 1])/len(under_sample_data))
# print("Total number of transactions in resampled data: ", len(under_sample_data))
# Whole dataset
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0)
# print("Number transactions train dataset: ", len(X_train))
# print("Number transactions test dataset: ", len(X_test))
# print("Total number of transactions: ", len(X_train)+len(X_test))
# Undersampled dataset
X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = train_test_split(X_undersample
,y_undersample
,test_size = 0.3
,random_state = 0)
# print("")
# print("Number transactions train dataset: ", len(X_train_undersample))
# print("Number transactions test dataset: ", len(X_test_undersample))
# print("Total number of transactions: ", len(X_train_undersample)+len(X_test_undersample))
def printing_Kfold_scores(x_train_data,y_train_data):
fold = KFold(5,shuffle=False)
# Different C parameters
c_param_range = [0.01,0.1,1,10,100]
results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score'])
results_table['C_parameter'] = c_param_range
# the k-fold will give 2 lists: train_indices = indices[0], test_indices = indices[1]
j = 0
for c_param in c_param_range:
print('-------------------------------------------')
print('C parameter: ', c_param)
print('-------------------------------------------')
print('')
recall_accs = []
#for iteration, indices in enumerate(fold,start=1):
for iteration, indices in enumerate(fold.split(X_train_undersample)):
# Call the logistic regression model with a certain C parameter
lr = LogisticRegression(C = c_param, penalty = 'l1')
# Use the training data to fit the model. In this case, we use the portion of the fold to train the model
# with indices[0]. We then predict on the portion assigned as the 'test cross validation' with indices[1]
lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel())
# Predict values using the test indices in the training data
y_pred_undersample = lr.predict(x_train_data.iloc[indices[1],:].values)
# Calculate the recall score and append it to a list for recall scores representing the current c_parameter
recall_acc = recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample)
recall_accs.append(recall_acc)
print('Iteration ', iteration,': recall score = ', recall_acc)
# The mean value of those recall scores is the metric we want to save and get hold of.
results_table.ix[j,'Mean recall score'] = np.mean(recall_accs)
j += 1
print('')
print('Mean recall score ', np.mean(recall_accs))
print('')
best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter']
# Finally, we can check which C parameter is the best amongst the chosen.
print('*********************************************************************************')
print('Best model to choose from cross validation is with C parameter = ', best_c)
print('*********************************************************************************')
return best_c
best_c = printing_Kfold_scores(X_train_undersample,y_train_undersample)
-------------------------------------------
C parameter: 0.01
-------------------------------------------
Iteration 0 : recall score = 0.9315068493150684
Iteration 1 : recall score = 0.9178082191780822
Iteration 2 : recall score = 1.0
Iteration 3 : recall score = 0.972972972972973
Iteration 4 : recall score = 0.9696969696969697
Mean recall score 0.9583970022326186
-------------------------------------------
C parameter: 0.1
-------------------------------------------
Iteration 0 : recall score = 0.8493150684931506
Iteration 1 : recall score = 0.863013698630137
Iteration 2 : recall score = 0.9322033898305084
Iteration 3 : recall score = 0.9459459459459459
Iteration 4 : recall score = 0.9090909090909091
Mean recall score 0.8999138023981302
-------------------------------------------
C parameter: 1
-------------------------------------------
Iteration 0 : recall score = 0.863013698630137
Iteration 1 : recall score = 0.9041095890410958
Iteration 2 : recall score = 0.9830508474576272
3 : recall score = 0.9459459459459459
Iteration 4 : recall score = 0.9090909090909091
Mean recall score 0.921042198033143
-------------------------------------------
C parameter: 10
-------------------------------------------
Iteration 0 : recall score = 0.863013698630137
Iteration 1 : recall score = 0.9041095890410958
Iteration 2 : recall score = 0.9830508474576272
Iteration 3 : recall score = 0.9324324324324325
Iteration 4 : recall score = 0.9242424242424242
Mean recall score 0.9213697983607434
-------------------------------------------
C parameter: 100
-------------------------------------------
Iteration 0 : recall score = 0.863013698630137
Iteration 1 : recall score = 0.9041095890410958
Iteration 2 : recall score = 0.9830508474576272
Iteration 3 : recall score = 0.9459459459459459
Iteration 4 : recall score = 0.9242424242424242
Mean recall score 0.924072501063446
def plot_confusion_matrix(cm, classes,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=0)
plt.yticks(tick_marks, classes)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
import itertools
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample = lr.predict(X_test_undersample.values)
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test_undersample,y_pred_undersample)
np.set_printoptions(precision=2)
print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix
, classes=class_names
, title='Confusion matrix')
plt.show()
Recall metric in the testing dataset: 0.9319727891156463
混淆矩阵Confusion matrix,由一个坐标系组成,x轴由0/1,y轴也有0/1,x轴表示预测值,y轴表示真值
精度值 = (129 + 137)/(129 + 137 + 10 + 20)
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred = lr.predict(X_test.values)
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test,y_pred)
np.set_printoptions(precision=2)
print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix
, classes=class_names
, title='Confusion matrix')
plt.show()
Recall metric in the testing dataset: 0.918367346939
上图,8581 个误杀样本,比较多。不会影响Recall值,但使得精度降低,工作量增大。
目的是找出135个判断正确的。
样本什么都不做,直接用原始数据预测的模型效果如下,发现Recall值偏低,不及之前下采样的结果
best_c = printing_Kfold_scores(X_train,y_train)
-------------------------------------------
C parameter: 0.01
-------------------------------------------
Iteration 1 : recall score = 0.492537313433
Iteration 2 : recall score = 0.602739726027
Iteration 3 : recall score = 0.683333333333
Iteration 4 : recall score = 0.569230769231
Iteration 5 : recall score = 0.45
Mean recall score 0.559568228405
-------------------------------------------
C parameter: 0.1
-------------------------------------------
Iteration 1 : recall score = 0.567164179104
Iteration 2 : recall score = 0.616438356164
Iteration 3 : recall score = 0.683333333333
Iteration 4 : recall score = 0.584615384615
Iteration 5 : recall score = 0.525
Mean recall score 0.595310250644
-------------------------------------------
C parameter: 1
-------------------------------------------
Iteration 1 : recall score = 0.55223880597
Iteration 2 : recall score = 0.616438356164
Iteration 3 : recall score = 0.716666666667
Iteration 4 : recall score = 0.615384615385
Iteration 5 : recall score = 0.5625
Mean recall score 0.612645688837
-------------------------------------------
C parameter: 10
-------------------------------------------
Iteration 1 : recall score = 0.55223880597
Iteration 2 : recall score = 0.616438356164
Iteration 3 : recall score = 0.733333333333
Iteration 4 : recall score = 0.615384615385
Iteration 5 : recall score = 0.575
Mean recall score 0.61847902217
-------------------------------------------
C parameter: 100
-------------------------------------------
Iteration 1 : recall score = 0.55223880597
Iteration 2 : recall score = 0.616438356164
Iteration 3 : recall score = 0.733333333333
Iteration 4 : recall score = 0.615384615385
Iteration 5 : recall score = 0.575
Mean recall score 0.61847902217
*********************************************************************************
Best model to choose from cross validation is with C parameter = 10.0
*********************************************************************************
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(X_train,y_train.values.ravel())
y_pred_undersample = lr.predict(X_test.values)
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test,y_pred_undersample)
np.set_printoptions(precision=2)
print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix
, classes=class_names
, title='Confusion matrix')
plt.show()
Recall metric in the testing dataset: 0.619047619048
不同门限值对结果的影响
参照logistics sigmoid函数,判决门限比如大于0.9才判为正例,而不是默认的0.5,这样对准确度的影响是多少?入门的门槛比较高
如果降低门限<0.1:宁可错杀一万也不放走一例
lr = LogisticRegression(C = 0.01, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample_proba = lr.predict_proba(X_test_undersample.values) # 之前是预测类别值,现在是预测概率值
thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
plt.figure(figsize=(10,10))
j = 1
for i in thresholds:
y_test_predictions_high_recall = y_pred_undersample_proba[:,1] > i
plt.subplot(3,3,j)
j += 1
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test_undersample,y_test_predictions_high_recall)
np.set_printoptions(precision=2)
print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
# Plot non-normalized confusion matrix
class_names = [0,1]
plot_confusion_matrix(cnf_matrix
, classes=class_names
, title='Threshold >= %s'%i)
Recall metric in the testing dataset: 1.0
Recall metric in the testing dataset: 1.0
Recall metric in the testing dataset: 1.0
Recall metric in the testing dataset: 0.986394557823
Recall metric in the testing dataset: 0.931972789116
Recall metric in the testing dataset: 0.884353741497
Recall metric in the testing dataset: 0.836734693878
Recall metric in the testing dataset: 0.748299319728
Recall metric in the testing dataset: 0.571428571429
Threhold值很小,即宁可错杀也不放过,则此时的recall值较高
Threhold值增高,则放松规则,则recall值下降
Threhold = 0.1, 精度很低,即所有的样本都预测成目标样本。
Threhold = 0.2,精度低
therhold = 0.4, 误杀率降低,但也出现部分sample检测不到
threhold = 0.6时的精度更高
结合实际工程需求,总格recall,精度等不同指标
过采样
数据生成,需要用到smote算法。
计算每一个样本到所有样本点的欧式距离,然后进行排序,如果乘以5倍,则按照上面的Xnew = x + rand(0,1)x(x~ - x) 生成。 随机生成
第一次用d1,第二次d2,。。。 透过距离值生成新的sample
import pandas as pd
from imblearn.over_sampling import SMOTE
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
credit_cards=pd.read_csv('creditcard.csv')
columns=credit_cards.columns
# The labels are in the last column ('Class'). Simply remove it to obtain features columns
features_columns=columns.delete(len(columns)-1)
features=credit_cards[features_columns]
labels=credit_cards['Class']
features_train, features_test, labels_train, labels_test = train_test_split(features,
labels,
test_size=0.2,
random_state=0)
oversampler=SMOTE(random_state=0)
os_features,os_labels=oversampler.fit_sample(features_train,labels_train)
# 利用训练集进行生成。测试集保持不动
len(os_labels[os_labels==1])
227454
os_features = pd.DataFrame(os_features)
os_labels = pd.DataFrame(os_labels)
best_c = printing_Kfold_scores(os_features,os_labels)
-------------------------------------------
C parameter: 0.01
-------------------------------------------
Iteration 1 : recall score = 0.890322580645
Iteration 2 : recall score = 0.894736842105
Iteration 3 : recall score = 0.968861347792
Iteration 4 : recall score = 0.957595541926
Iteration 5 : recall score = 0.958430881173
Mean recall score 0.933989438728
-------------------------------------------
C parameter: 0.1
-------------------------------------------
Iteration 1 : recall score = 0.890322580645
Iteration 2 : recall score = 0.894736842105
Iteration 3 : recall score = 0.970410534469
Iteration 4 : recall score = 0.959980655302
Iteration 5 : recall score = 0.960178498807
Mean recall score 0.935125822266
-------------------------------------------
C parameter: 1
-------------------------------------------
Iteration 1 : recall score = 0.890322580645
Iteration 2 : recall score = 0.894736842105
Iteration 3 : recall score = 0.970454796946
Iteration 4 : recall score = 0.96014552489
Iteration 5 : recall score = 0.960596168431
Mean recall score 0.935251182603
-------------------------------------------
C parameter: 10
-------------------------------------------
Iteration 1 : recall score = 0.890322580645
Iteration 2 : recall score = 0.894736842105
Iteration 3 : recall score = 0.97065397809
Iteration 4 : recall score = 0.960343368396
Iteration 5 : recall score = 0.960530220596
Mean recall score 0.935317397966
-------------------------------------------
C parameter: 100
-------------------------------------------
Iteration 1 : recall score = 0.890322580645
Iteration 2 : recall score = 0.894736842105
Iteration 3 : recall score = 0.970543321899
Iteration 4 : recall score = 0.960211472725
Iteration 5 : recall score = 0.960903924995
Mean recall score 0.935343628474
*********************************************************************************
Best model to choose from cross validation is with C parameter = 100.0
*********************************************************************************
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(os_features,os_labels.values.ravel())
y_pred = lr.predict(features_test.values)
# Compute confusion matrix
cnf_matrix = confusion_matrix(labels_test,y_pred)
np.set_printoptions(precision=2)
print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix
, classes=class_names
, title='Confusion matrix')
plt.show()
Recall metric in the testing dataset: 0.90099009901
发现,透过过采样方式得到的误杀率有所降低,即模型的准确率提高。
如果计算能力许可,尽量用尽量多的数据进行预测,提高模型的精度。
总结:
1- 拿到数据,首先看一下数据的整体分布,是比较均匀,还是差异比较大,如果不均匀,则采用下采样/过采样等方法
2- 看数据是否需要预处理,本例数据已经与处理过,可以直接拿来使用
3- 先对数据标准化,让所有的数据分布在-1~1区间内
4- 不同的参数,对结果的影响很大,如何找到合适的参数? 交叉验证
5- 混淆矩阵,即模型选择标准
6- 透过阈值与预测值比较,综合判断,选择合适的阈值
来源:CSDN
作者:史努B
链接:https://blog.csdn.net/f2157120/article/details/104146905