卡特兰数的规律 catalan(n)=∑i=0n−1catalan(i)×catalan(n−i−1) catalan(n)=\sum_{i=0}^{n-1}catalan(i)\times catalan(n-i-1) catalan(n)=i=0∑n−1catalan(i)×catalan(n−i−1) catalan(n)=catalan(n−1)×(4n−2)n+1 catalan(n)=\frac{catalan(n-1)\times(4n-2)}{n+1} catalan(n)=n+1catalan(n−1)×(4n−2) catalan(n)=C2nnn+1 catalan(n)=\frac{C_{2n}^n}{n+1} catalan(n)=n+1C2nn catalan(n)=C2nn−C2nn−1 catalan(n)=C_{2n}^n-C_{2n}^{n-1} catalan(n)=C2nn−C2nn−1 catalan(n)=∑i=0n(Cni)2n+1 catalan(n)=\frac{\sum_{i=0}^{n}(C_n^i)^2}{n+1} catalan(n)=n+1∑i=0n(Cni)2 catalan(n)=(2n)!(n+1)!n! catalan(n)=\frac{(2n)!}{(n+1)!n!} catalan(n)=(n+1)!n!(2n)! 如果n=2k−1,则catalan(n)≡1(mod 2)其余情况catalan(n)≡0(mod 2) 如果n=2^k-1,则catalan(n)\equiv1(mod\ 2)\\ 其余情况catalan(n)\equiv0(mod\ 2) 如果n=2k−1,则catalan(n)≡1(mod 2)其余情况catalan(n)≡0(mod 2) 来源:CSDN作者:冷酷|射手链接:https://blog.csdn.net/fangfengwei/article/details/104132678 标签 卡特兰数