Setting hyperparameter optimization bounds in GPflow 2.0

拜拜、爱过 提交于 2020-01-15 08:20:07

问题


In GPflow 1.0, if I wanted to set hard bounds on a parameter like lengthscale (i.e. limiting the optimisation range for the parameter),

transforms.Logistic(a=4., b=6.)

would bound the parameter between 4 and 6.

GPflow 2.0's documentation says that transforms are handled by TensorFlow Probability's Bijector classes. Which Bijector class handles setting hard limits on parameters, and what is the proper way to implement it?

A similar question was asked here (Kernel's hyper-parameters; initialization and setting bounds) regarding GPflow 1.0. But since GPflow 1.0 did not involve use of Bijectors, I have opened a new question.


回答1:


This is fairly easy to do with the chain of bijectors:

In [35]: a = 3.0
    ...: b = 5.0
    ...: affine = tfp.bijectors.AffineScalar(shift=a, scale=(b - a))
    ...: sigmoid = tfp.bijectors.Sigmoid()
    ...: logistic = tfp.bijectors.Chain([affine, sigmoid])

In [36]: logistic.forward(logistic.inverse(3.1) + 0.0)
Out[36]: <tf.Tensor: id=222, shape=(), dtype=float32, numpy=3.1>

Now, you can pass logistic bijector to the Parameter constructor directly.

In [45]: p = gpflow.Parameter(3.1, transform=logistic, dtype=tf.float32)

In [46]: p
Out[46]: <tf.Tensor: id=307, shape=(), dtype=float32, numpy=3.1>

In [47]: p.unconstrained_variable
Out[47]: <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=-2.9444401>


来源:https://stackoverflow.com/questions/58903446/setting-hyperparameter-optimization-bounds-in-gpflow-2-0

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!