5.
三叉链表
//三叉链表
//含有n个结点的二叉链表含有n+1个空链域
typedef struct
{
ElemType data;
struct BitNode *lchild,*rchild,*parent;
}BitNode,*BiTree;
void destroyBiTree(BiTree &T)
{
`if(T) //非空树
{
if(T->lchild)
DestoryBiTree(T->lchild);
if(T->rchild)
DestoryBiTree(T->rchild);
free(T);
T=NULL;
}
}
void createBiTree(BiTree &T)
{
ElemType e;
cin>>e;
}
二、线索二叉树
typedef struct
{
ElemType data;
struct thNode *lchild,*rchild;
int ltag,rtag;
}thNode,*thTree;
三、二叉排序树
四、哈夫曼树
基本概念
最优二叉树,树中所有叶结点的带权路径长度和最小的二叉树
算法实现
#include<stdlib.h>
#include<stdio.h>
#include<string.h>
typedef struct {
int weight;
int parent, left, right; //数组中的位置下标
}HTNode, *HuffmanTree;
typedef char ** HuffmanCode; //动态二维数组,存储哈夫曼编码
//HT为地址传递的存储哈夫曼树的数组,w为存储结点权重值的数组,n为结点个数
void CreateHuffmanTree(HuffmanTree *HT, int *w, int n)
{
if(n<=1) return; // 如果只有一个编码就相当于0
int m = 2*n-1; // m是哈夫曼树总节点数,n就是叶子结点
*HT = (HuffmanTree) malloc((m+1) * sizeof(HTNode)); // 0号位置不用
HuffmanTree p = *HT;
for(int i = 1; i <= n; i++) // 初始化哈夫曼树中的所有结点
{
(p+i)->weight = *(w+i-1);
(p+i)->parent = 0;
(p+i)->left = 0;
(p+i)->right = 0;
}
for(int i = n+1; i <= m; i++) //从树组的下标 n+1 开始初始化哈夫曼树中除叶子结点外的结点
{
(p+i)->weight = 0;
(p+i)->parent = 0;
(p+i)->left = 0;
(p+i)->right = 0;
}
for(int i = n+1; i <= m; i++) //构建哈夫曼树
{
int s1, s2;
Select(*HT, i-1, &s1, &s2);
(*HT)[s1].parent = (*HT)[s2].parent = i;
(*HT)[i].left = s1;
(*HT)[i].right = s2;
(*HT)[i].weight = (*HT)[s1].weight + (*HT)[s2].weight;
}
}
//HT数组中存放的哈夫曼树,end表示HT数组中存放结点的最终位置
//s1和s2传递的是HT数组中权重值最小的两个结点在数组中的位置
void Select(HuffmanTree HT, int end, int *s1, int *s2)
{
int min1, min2;
//遍历数组初始下标为 1
int i = 1;
//找到还没构建树的结点
while(HT[i].parent != 0 && i <= end){
i++;
}
min1 = HT[i].weight;
*s1 = i;
i++;
while(HT[i].parent != 0 && i <= end){
i++;
}
//对找到的两个结点比较大小,min2为大的,min1为小的
if(HT[i].weight < min1){
min2 = min1;
*s2 = *s1;
min1 = HT[i].weight;
*s1 = i;
}else{
min2 = HT[i].weight;
*s2 = i;
}
//两个结点和后续的所有未构建成树的结点做比较
for(int j=i+1; j <= end; j++)
{
//如果有父结点,直接跳过,进行下一个
if(HT[j].parent != 0){
continue;
}
//如果比最小的还小,将min2=min1,min1赋值新的结点的下标
if(HT[j].weight < min1){
min2 = min1;
min1 = HT[j].weight;
*s2 = *s1;
*s1 = j;
}
//如果介于两者之间,min2赋值为新的结点的位置下标
else if(HT[j].weight >= min1 && HT[j].weight < min2){
min2 = HT[j].weight;
*s2 = j;
}
}
}
//HT为哈夫曼树,HC为存储结点哈夫曼编码的二维动态数组,n为结点的个数
void HuffmanCoding(HuffmanTree HT, HuffmanCode *HC,int n){
*HC = (HuffmanCode) malloc((n+1) * sizeof(char *));
char *cd = (char *)malloc(n*sizeof(char)); //存放结点哈夫曼编码的字符串数组
cd[n-1] = '\0'; //字符串结束符
for(int i=1; i<=n; i++){
//从叶子结点出发,得到的哈夫曼编码是逆序的,需要在字符串数组中逆序存放
int start = n-1;
//当前结点在数组中的位置
int c = i;
//当前结点的父结点在数组中的位置
int j = HT[i].parent;
// 一直寻找到根结点
while(j != 0){
// 如果该结点是父结点的左孩子则对应路径编码为0,否则为右孩子编码为1
if(HT[j].left == c)
cd[--start] = '0';
else
cd[--start] = '1';
//以父结点为孩子结点,继续朝树根的方向遍历
c = j;
j = HT[j].parent;
}
//跳出循环后,cd数组中从下标 start 开始,存放的就是该结点的哈夫曼编码
(*HC)[i] = (char *)malloc((n-start)*sizeof(char));
strcpy((*HC)[i], &cd[start]);
}
//使用malloc申请的cd动态数组需要手动释放
free(cd);
}
//打印哈夫曼编码的函数
void PrintHuffmanCode(HuffmanCode htable,int *w,int n)
{
printf("Huffman code : \n");
for(int i = 1; i <= n; i++)
printf("%d code = %s\n",w[i-1], htable[i]);
}
int main(void)
{
int w[5] = {2, 8, 7, 6, 5};
int n = 5;
HuffmanTree htree;
HuffmanCode htable;
CreateHuffmanTree(&htree, w, n);
HuffmanCoding(htree, &htable, n);
PrintHuffmanCode(htable,w, n);
return 0;
}
来源:CSDN
作者:lizhongV
链接:https://blog.csdn.net/qq_33904395/article/details/103958155