Goroutines 8kb and windows OS thread 1 mb

会有一股神秘感。 提交于 2020-01-11 10:24:27

问题


As windows user, I know that OS threads consume ~1 Mb of memory due to By default, Windows allocates 1 MB of memory for each thread’s user-mode stack. How does golang use ~8kb of memory for each goroutine, if OS thread is much more gluttonous. Are goroutine sort of virtual threads?


回答1:


Goroutines are not threads, they are (from the spec):

...an independent concurrent thread of control, or goroutine, within the same address space.

Effective Go defines them as:

They're called goroutines because the existing terms—threads, coroutines, processes, and so on—convey inaccurate connotations. A goroutine has a simple model: it is a function executing concurrently with other goroutines in the same address space. It is lightweight, costing little more than the allocation of stack space. And the stacks start small, so they are cheap, and grow by allocating (and freeing) heap storage as required.

Goroutines don't have their own threads. Instead multiple goroutines are (may be) multiplexed onto the same OS threads so if one should block (e.g. waiting for I/O or a blocking channel operation), others continue to run.

The actual number of threads executing goroutines simultaneously can be set with the runtime.GOMAXPROCS() function. Quoting from the runtime package documentation:

The GOMAXPROCS variable limits the number of operating system threads that can execute user-level Go code simultaneously. There is no limit to the number of threads that can be blocked in system calls on behalf of Go code; those do not count against the GOMAXPROCS limit.

Note that in current implementation by default only 1 thread is used to execute goroutines.




回答2:


1 MiB is the default, as you correctly noted. You can pick your own stack size easily (however, the minimum is still a lot higher than ~8 kiB).

That said, goroutines aren't threads. They're just tasks with coöperative multi-tasking, similar to Python's. The goroutine itself is just the code and data required to do what you want; there's also a separate scheduler (which runs on one on more OS threads), which actually executes that code.

In pseudo-code:

loop forever
 take job from queue
 execute job
end loop

Of course, the execute job part can be very simple, or very complicated. The simplest thing you can do is just execute a given delegate (if your language supports something like that). In effect, this is simply a method call. In more complicated scenarios, there can be also stuff like restoring some kind of context, handling continuations and coöperative task yields, for example.

This is a very light-weight approach, and very useful when doing asynchronous programming (which is almost everything nowadays :)). Many languages now support something similar - Python is the first one I've seen with this ("tasklets"), long before go. Of course, in an environment without pre-emptive multi-threading, this was pretty much the default.

In C#, for example, there's Tasks. They're not entirely the same as goroutines, but in practice, they come pretty close - the main difference being that Tasks use threads from the thread pool (usually), rather than a separate dedicated "scheduler" threads. This means that if you start 1000 tasks, it is possible for them to be run by 1000 separate threads; in practice, it would require you to write very bad Task code (e.g. using only blocking I/O, sleeping threads, waiting on wait handles etc.). If you use Tasks for asynchronous non-blocking I/O and CPU work, they come pretty close to goroutines - in actual practice. The theory is a bit different :)

EDIT:

To clear up some confusion, here is how a typical C# asynchronous method might look like:

async Task<string> GetData()
{
  var html = await HttpClient.GetAsync("http://www.google.com");

  var parsedStructure = Parse(html);
  var dbData = await DataLayer.GetSomeStuffAsync(parsedStructure.ElementId);

  return dbData.First().Description;
}

From point of view of the GetData method, the entire processing is synchronous - it's just as if you didn't use the asynchronous methods at all. The crucial difference is that you're not using up threads while you're doing the "waiting"; but ignoring that, it's almost exactly the same as writing synchronous blocking code. This also applies to any issues with shared state, of course - there isn't much of a difference between multi-threading issues in await and in blocking multi-threaded I/O. It's easier to avoid with Tasks, but just because of the tools you have, not because of any "magic" that Tasks do.

The main difference from goroutines in this aspect is that Go doesn't really have blocking methods in the usual sense of the word. Instead of blocking, they queue their particular asynchronous request, and yield. When the OS (and any other layers in Go - I don't have deep knowledge about the inner workings) receives the response, it posts it to the goroutine scheduler, which in turns knows that the goroutine that "waits" for the response is now ready to resume execution; when it actually gets a slot, it will continue on from the "blocking" call as if it had really been blocking - but in effect, it's very similar to what C#'s await does. There's no fundamental difference - there's quite a few differences between C#'s approach and Go's, but they're not all that huge.

And also note that this is fundamentally the same approach used on old Windows systems without pre-emptive multi-tasking - any "blocking" method would simply yield the thread's execution back to the scheduler. Of course, on those systems, you only had a single CPU core, so you couldn't execute multiple threads at once, but the principle is still the same.




回答3:


goroutines are what we call green threads. They are not OS threads, the go scheduler is responsible for them. This is why they can have much smaller memory footprints.



来源:https://stackoverflow.com/questions/30073441/goroutines-8kb-and-windows-os-thread-1-mb

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!