基于百度飞浆深度学习框架的各个优化算法比较(手写数字识别)

余生颓废 提交于 2020-01-10 21:51:14
# 加载相关库
import os
import random
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
import numpy as np
from PIL import Image

import gzip
import json

一、数据处理

# 声明数据集文件位置
datafile = './work/mnist.json.gz'
print('loading mnist dataset from {} ......'.format(datafile))
# 加载json数据文件
data = json.load(gzip.open(datafile))
print('mnist dataset load done')
# 读取到的数据区分训练集,验证集,测试集
train_set, val_set, eval_set = data

# 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
IMG_ROWS = 28
IMG_COLS = 28

# 打印数据信息
imgs, label = train_set[0], train_set[1]
print("训练数据集数量: ", len(imgs))

# 观察验证集数量
imgs, label = val_set[0], val_set[1]
print("验证数据集数量: ", len(imgs))

# 观察测试集数量
imgs, label = val= eval_set[0], eval_set[1]
print("测试数据集数量: ", len(imgs))

输出:

loading mnist dataset from ./work/mnist.json.gz ......
mnist dataset load done
训练数据集数量:  50000
验证数据集数量:  10000
测试数据集数量:  10000

二、定义数据读取函数

# 定义数据集读取器
def load_data(mode='train'):
    # 读取数据文件
    datafile = './work/mnist.json.gz'
    print('loading mnist dataset from {} ......'.format(datafile))
    data = json.load(gzip.open(datafile))
    # 读取数据集中的训练集,验证集和测试集
    train_set, val_set, eval_set = data
    # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
    IMG_ROWS = 28
    IMG_COLS = 28
    # 根据输入mode参数决定使用训练集,验证集还是测试
    if mode == 'train':
        imgs = train_set[0]
        labels = train_set[1]
    elif mode == 'valid':
        imgs = val_set[0]
        labels = val_set[1]
    elif mode == 'eval':
        imgs = eval_set[0]
        labels = eval_set[1]
    # 获得所有图像的数量
    imgs_length = len(imgs)
    # 验证图像数量和标签数量是否一致
    assert len(imgs) == len(labels), \
          "length of train_imgs({}) should be the same as train_labels({})".format(
                  len(imgs), len(labels))

    index_list = list(range(imgs_length))

    # 读入数据时用到的batchsize
    BATCHSIZE = 100

    # 定义数据生成器
    def data_generator():
        # 训练模式下,打乱训练数据
        if mode == 'train':
            random.shuffle(index_list)
        imgs_list = []
        labels_list = []
        # 按照索引读取数据
        for i in index_list:
            # 读取图像和标签,转换其尺寸和类型
            img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
            label = np.reshape(labels[i], [1]).astype('int64')
            imgs_list.append(img) 
            labels_list.append(label)
            # 如果当前数据缓存达到了batch size,就返回一个批次数据
            if len(imgs_list) == BATCHSIZE:
                yield np.array(imgs_list), np.array(labels_list)
                # 清空数据缓存列表
                imgs_list = []
                labels_list = []

        # 如果剩余数据的数目小于BATCHSIZE,
        # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
        if len(imgs_list) > 0:
            yield np.array(imgs_list), np.array(labels_list)

    return data_generator

三、模型设计

# 定义模型结构
class MNIST(fluid.dygraph.Layer):
     def __init__(self, name_scope):
         super(MNIST, self).__init__(name_scope)
         name_scope = self.full_name()
         # 定义卷积层,输出通道20,卷积核大小为5,步长为1,padding为2,使用relu激活函数
         self.conv1 = Conv2D(name_scope, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
         # 定义池化层,池化核为2,采用最大池化方式
         self.pool1 = Pool2D(name_scope, pool_size=2, pool_stride=2, pool_type='max')
         # 定义卷积层,输出通道20,卷积核大小为5,步长为1,padding为2,使用relu激活函数
         self.conv2 = Conv2D(name_scope, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
         # 定义池化层,池化核为2,采用最大池化方式
         self.pool2 = Pool2D(name_scope, pool_size=2, pool_stride=2, pool_type='max')
         # 定义全连接层,输出节点数为10,激活函数使用softmax
         self.fc = FC(name_scope, size=10, act='softmax')
         
    # 定义网络的前向计算过程
     def forward(self, inputs, label=None):
         x = self.conv1(inputs)
         x = self.pool1(x)
         x = self.conv2(x)
         x = self.pool2(x)
         x = self.fc(x)
         if label is not None:
             acc = fluid.layers.accuracy(input=x, label=label)
             return x, acc
         else:
             return x

四、训练过程(可视化分析)

#引入matplotlib库
import matplotlib.pyplot as plt

#调用加载数据的函数
train_loader = load_data('train')

#在使用GPU机器时,可以将use_gpu变量设置成True
use_gpu = False
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()

with fluid.dygraph.guard(place):
    model = MNIST("mnist")
    model.train() 
    
    #四种优化算法的设置方案,可以逐一尝试效果
    optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001) 
    # optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001,momentum=0.9)  
    # optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.001)  
    # optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001)
    
    #各种优化算法均可以加入正则化项,避免过拟合,参数regularization_coeff调节正则化项的权重
    # optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001, regularization=fluid.regularizer.L2Decay(regularization_coeff=0.1))
    # optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001, regularization=fluid.regularizer.L2Decay(regularization_coeff=0.1))
    
    EPOCH_NUM = 10
    iter=0
    iters=[]
    losses=[]
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            #准备数据,变得更加简洁
            image_data, label_data = data
            image = fluid.dygraph.to_variable(image_data)
            label = fluid.dygraph.to_variable(label_data)
            
            #前向计算的过程,同时拿到模型输出值和分类准确率
            predict, avg_acc = model(image, label)

            #计算损失,取一个批次样本损失的平均值
            loss = fluid.layers.cross_entropy(predict, label)
            avg_loss = fluid.layers.mean(loss)
            
            #每训练了100批次的数据,打印下当前Loss的情况
            if batch_id % 100 == 0:
                print("epoch: {}, batch: {}, loss is: {}, acc is {}".format(epoch_id, batch_id, avg_loss.numpy(),avg_acc.numpy()))
                iters.append(iter)
                losses.append(avg_loss.numpy())
                iter = iter + 100

            #后向传播,更新参数的过程
            avg_loss.backward()
            optimizer.minimize(avg_loss)
            model.clear_gradients()

    #保存模型参数
    fluid.save_dygraph(model.state_dict(), 'mnist')

    #画出训练过程中Loss的变化曲线
    plt.figure()
    plt.title("train loss", fontsize=24)
    plt.xlabel("iter", fontsize=14)
    plt.ylabel("loss", fontsize=14)
    plt.plot(iters, losses,color='red',label='train loss') 
    plt.grid()
    plt.show()

五、测试模型

with fluid.dygraph.guard():
    print('start evaluation .......')
    #加载模型参数
    model = MNIST("mnist")
    model_state_dict, _ = fluid.load_dygraph('mnist')
    model.load_dict(model_state_dict)

    model.eval()
    eval_loader = load_data('eval')

    acc_set = []
    avg_loss_set = []
    for batch_id, data in enumerate(eval_loader()):
        x_data, y_data = data
        img = fluid.dygraph.to_variable(x_data)
        label = fluid.dygraph.to_variable(y_data)
        prediction, acc = model(img, label)
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
        avg_loss = fluid.layers.mean(loss)
        acc_set.append(float(acc.numpy()))
        avg_loss_set.append(float(avg_loss.numpy()))
    
    #计算多个batch的平均损失和准确率
    acc_val_mean = np.array(acc_set).mean()
    avg_loss_val_mean = np.array(avg_loss_set).mean()

    print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))

EPOCH_NUM = 10 - - - - - - - - - - - - - 学习率:0.001

1、SGDOptimizer
time :8分36秒
loss=0.06439950270578265, acc=0.9811000072956085
在这里插入图片描述
2、MomentumOptimizer
time :8分33秒
loss=0.06447910408256576, acc=0.9807000064849853
在这里插入图片描述
3、AdagradOptimizer
time :8分25秒
loss=0.29185261455295886, acc=0.9827000087499619
在这里插入图片描述
4、AdamOptimizer
time :8分26秒
loss=0.08465555551959823, acc=0.9830000096559525
在这里插入图片描述
5、SGDOptimizer(regularization=fluid.regularizer.L2Decay(regularization_coeff=0.1))
time :8分55秒
loss=0.3422978096455336, acc=0.9198000031709671
在这里插入图片描述
6、AdamOptimizer(regularization=fluid.regularizer.L2Decay(regularization_coeff=0.1))
time :11分46秒
loss=0.26560566030442717, acc=0.9434000045061112
在这里插入图片描述

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!