【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>>
通过预训练模型进行图像的自动抠图及整合。
代码已经共享在AIStudio上,链接:
https://aistudio.baidu.com/aistudio/projectdetail/242887
模型概述 DeepLabv3+ 是Google DeepLab语义分割系列网络的最新作,其前作有 DeepLabv1,DeepLabv2, DeepLabv3。在最新作中,作者通过encoder-decoder进行多尺度信息的融合,同时保留了原来的空洞卷积和ASSP层, 其骨干网络使用了Xception模型,提高了语义分割的健壮性和运行速率,在 PASCAL VOC 2012 dataset取得新的state-of-art performance。该PaddleHub Module使用百度自建数据集进行训练,可用于人像分割,支持任意大小的图片输入。
命令行预测示例 $ hub run deeplabv3p_xception65_humanseg --input_path "/PATH/TO/IMAGE" $ hub run deeplabv3p_xception65_humanseg --input_file test.txt test.txt 存放待分割图片的存放路径
API def segmentation(data) 用于人像分割
参数
data:dict类型,key为image,str类型;value为待分割的图片路径,list类型。 output_dir:生成图片的保存路径,默认为 humanseg_output
返回
result:list类型,每个元素为对应输入图片的预测结果。预测结果为dict类型,有以下字段:
origin 原输入图片路径 processed 分割图片的路径。
In[1]
cd work
/home/aistudio/work
先定义抠图的函数,通过调用图像分割模型抠图
In[7]
def body_seg_fore(imgname):
module = hub.Module(name="deeplabv3p_xception65_humanseg")
test_img_path = "./"+imgname+".jpg"
# 预测结果展示
img = mpimg.imread(test_img_path)
plt.imshow(img)
plt.axis('off')
plt.show()
# set input dict
input_dict = {"image": [test_img_path]}
# execute predict and print the result
results = module.segmentation(data=input_dict)
for result in results:
print(result)
test_img_path = "./humanseg_output/"+imgname+".png"
img = mpimg.imread(test_img_path)
plt.imshow(img)
plt.axis('off')
plt.show()
return test_img_path
In[8]
body_seg_fore('body2')
[2020-01-10 06:39:53,705] [ INFO] - Installing deeplabv3p_xception65_humanseg module
2020-01-10 06:39:53,705-INFO: Installing deeplabv3p_xception65_humanseg module
[2020-01-10 06:39:53,753] [ INFO] - Module deeplabv3p_xception65_humanseg already installed in /home/aistudio/.paddlehub/modules/deeplabv3p_xception65_humanseg
2020-01-10 06:39:53,753-INFO: Module deeplabv3p_xception65_humanseg already installed in /home/aistudio/.paddlehub/modules/deeplabv3p_xception65_humanseg
[2020-01-10 06:39:54,539] [ INFO] - 0 pretrained paramaters loaded by PaddleHub
2020-01-10 06:39:54,539-INFO: 0 pretrained paramaters loaded by PaddleHub
{'origin': './body2.jpg', 'processed': 'humanseg_output/body2.png'}
'./humanseg_output/body2.png'
定义图片合成函数。
In[12]
#图片整合
#foreimage:前景照片,baseimage:景区照片,outputimage:数据结果,rate:前景照片缩放比例
def combine_image(foreimage,baseimage,outputimage,rate):
from PIL import Image
base_img = Image.open(baseimage)
BL, BH = base_img.size
#读取要粘贴的图片 RGBA模式
#当需要将一张有透明部分的图片粘贴到一张底片上时,如果用Python处理,可能会用到PIL,
#但是PIL中 有说明,在粘贴RGBA模式的图片是,alpha通道不会被帖上,也就是不会有透明的效果,
#当然也给出了解决方法,就是粘贴的时候,将RGBA的的alpha通道提取出来做为mask传入。
fore_image = Image.open(foreimage)
L, H = fore_image.size
#缩放
fore_image = fore_image.resize((int(L * rate), int(H * rate)))
L, H = fore_image.size
#分离通道
r,g,b,a = fore_image.split() #粘贴
box=(int(BL/2-L/2), BH-H, int(BL/2+L/2) ,BH)
base_img.paste(fore_image,box,mask = a)
base_img.save(outputimage) # 保存图片
#输出程序
def show_image(originimage,baseimage,outputimage,rate):
segname=body_seg_fore(originimage)
combine_image(segname,baseimage,outputimage,rate)
img = mpimg.imread(outputimage)
plt.imshow(img)
plt.axis('off')
plt.show()
return test_img_path
结果展示:
In[14]
show_image('body2','./desert.jpg','body2_desert.jpg',2)
[2020-01-10 06:42:43,724] [ INFO] - Installing deeplabv3p_xception65_humanseg module
2020-01-10 06:42:43,724-INFO: Installing deeplabv3p_xception65_humanseg module
[2020-01-10 06:42:43,746] [ INFO] - Module deeplabv3p_xception65_humanseg already installed in /home/aistudio/.paddlehub/modules/deeplabv3p_xception65_humanseg
2020-01-10 06:42:43,746-INFO: Module deeplabv3p_xception65_humanseg already installed in /home/aistudio/.paddlehub/modules/deeplabv3p_xception65_humanseg
[2020-01-10 06:42:44,629] [ INFO] - 0 pretrained paramaters loaded by PaddleHub
2020-01-10 06:42:44,629-INFO: 0 pretrained paramaters loaded by PaddleHub
{'origin': './body2.jpg', 'processed': 'humanseg_output/body2.png'}
'./humanseg_output/body2.png'
In[18]
show_image('body1','./desert.jpg','body2_desert.jpg',0.3)
[2020-01-10 06:44:26,397] [ INFO] - Installing deeplabv3p_xception65_humanseg module
2020-01-10 06:44:26,397-INFO: Installing deeplabv3p_xception65_humanseg module
[2020-01-10 06:44:26,423] [ INFO] - Module deeplabv3p_xception65_humanseg already installed in /home/aistudio/.paddlehub/modules/deeplabv3p_xception65_humanseg
2020-01-10 06:44:26,423-INFO: Module deeplabv3p_xception65_humanseg already installed in /home/aistudio/.paddlehub/modules/deeplabv3p_xception65_humanseg
[2020-01-10 06:44:27,592] [ INFO] - 0 pretrained paramaters loaded by PaddleHub
2020-01-10 06:44:27,592-INFO: 0 pretrained paramaters loaded by PaddleHub
{'origin': './body1.jpg', 'processed': 'humanseg_output/body1.png'}
'./humanseg_output/body2.png'
来源:oschina
链接:https://my.oschina.net/u/4438602/blog/3155623